
Moving from the:
Cray XE6 to the Cray XC30

10/3/2013 Cray Inc. Property
1

Continuity

2

The High Productivity Vision

Sli
de
3

● Cray systems are designed to be High Productivity as well
as High Performance Computers

● The Cray Programming Environment (PE) continues to
provide a simple and consistent interface to users and
developers.
● Renewed focus on improving scalability and reducing complexity

● The default Programming Environment provides:

● the highest levels of application performance
● a rich variety of commonly used tools and libraries
● a consistent interface to multiple compilers and libraries
● an increased automation of routine tasks

● Cray is committed to extending, developing and refining
the PE.
● Frequent communication and feedback to/from users
● Strong collaborations with third-party developers

Cray Software Ecosystem

CrayPAT

Cray Apprentice2

Cray Iterative

Refinement Toolkit

Cray PETSc, CASK

DVS

4

GNU

Reveal

Cray Linux

Environment

An Adaptive Linux OS optimized specifically

for HPC

5

• No compromise scalability

• Low-Noise Kernel for scalability

• Native Comm. & Optimized MPI

• Application-specific performance
tuning and scaling

ESM – Extreme Scalability

Mode

• No compromise compatibility

• Fully standard x86/Linux

• Standardized Communication Layer

• Out-of-the-box ISV Installation

• ISV applications simply install and
run

CCM –Cluster Compatibility

Mode

CLE run mode is set by the user on a job-by-job basis to provide full flexibility

Cray Integrated Programming Environment

 High Level Profile/ Tracing

 Performance Problem Analyzer

Database

containing

application

information

3. Static Analysis

5. Program Analysis Tools

Source-to-Source optimizations

1. Applications

Runtime Information

Export/Import

Program Analyses

 Performance Analysis

 Results

Queries for

Application

Optimization

Application

Source code

Performance

 Feedback

Performance Analysis Overview

Executing Application

2. Compiler

6

Cray Programming Environment Distribution
Focus on Performance and Productivity

Programming
Languages

Fortran

C

C++

I/O Libraries

NetCDF

HDF5

Optimized Scientific

Libraries

LAPACK

ScaLAPACK

BLAS (libgoto)

Iterative
Refinement

Toolkit

Cray Adaptive
FFTs (CRAFFT)

FFTW

Cray PETSc
 (with CASK)

Cray Trilinos
 (with CASK)

Cray developed

Licensed ISV SW

3rd party packaging

Cray added value to 3rd party

3rd Party
Compilers

GNU

Compilers

Cray Compiling
Environment

(CCE)

Programming

models

Distributed
Memory
(Cray MPT)

• MPI

• SHMEM

PGAS & Global
View

• UPC (CCE)

• CAF (CCE)

• Chapel

Shared Memory

• OpenMP 3.0

• OpenACC

Python

•CrayPat

• Cray
Apprentice2

Tools

Environment setup

Debuggers

Modules

DDT

lgdb

Modules

Debugging Support

Tools

•Abnormal
Termination
Processing

Performance Analysis

STAT

Scoping Analysis

Reveal

7

XE6 and XC30 Software Components
Generational Commonality

8

Gemini Network

Gemini - Hardware Abstraction Layer (HAL)

Kernel-level Generic Network

Interface (kGNI)

CLE Linux Core

MPI
UPC & CAF PGAS

Languages
SHMEM

io
c

tl
 o

r

s
y
s

c
a

ll

User-level

Generic Network Interface (uGNI)

Distributed Memory API (DMAPP)

Kernel

Gemini-aware optimized PE components

MPI

Applications

PGAS/SHMEM

Applications

Cray Linux

& Network

Driver

Network

Programming

Models

Generic

APIs

User

Applications

XE6 Software Stack XC30

Aries Network

Aries - Hardware Abstraction Layer (HAL)

Kernel-level Generic Network

Interface (kGNI)

CLE Linux Core

MPI
UPC & CAF PGAS

Languages
SHMEM

io
c

tl
 o

r

s
y
s

c
a

ll

Kernel

Aries-aware optimized PE components

MPI

Applications

PGAS/SHMEM

Applications

User-level

Generic Network Interface (uGNI)

Distributed Memory API (DMAPP)

O
S

 B
y
p

a
s

s

O
S

 B
y
p

a
s

s

O
S

 B
y
p

a
s

s

O
S

 B
y
p

a
s

s

Common Base

Site Network

External

Cluster

Manager

BMC

System

Management

Workstation

Boot RAID

SMW

L
e

g
e

n
d

Cray Content

3rd Party Content

Community Content

System

Config,

Boot

Manager,

&

Health

Services

Cray

System

Mgmt

Linux

Administrators

The Cray System

esFS

esLogin

esMS

External

Server

Mgmt

Linux

Cray

X86-64

I/O

Nodes

External

Login

Servers

Globally Addressable Memory

Service

x86

PCIe

Accelerator

Memory

GPU

x86

Compute

Memory

x86

x86

User Applications, Programs, & Scripts

uGNI Cray APIs DMAPP

Enhanced Accelerator Libraries

X86-64 Enhanced Libraries

MPI Scientific Other MPI Scientific

Programming Models

OpenMP OpenACC CAF UPC SHMEM MPI Chapel

Language Based Library Based

ALPS Infrastructure

CLE CLE CLE CLE CLE CLE CLE CLE

gNI gNI gNI gNI gNI gNI gNI gNI

Cray

GPU

Compute

Nodes

Cray

GPU

Compute

Nodes

Cray

x86-64

Compute

Nodes

Cray

GPU

Compute

Nodes

Cray

GPU

Compute

Nodes

Cray

x86-64

Compute

Nodes

Cray

x86-64

Compute

Nodes

Cray

x86-64

Compute

Nodes

CUDA

CUDA

Directive Based

Cray

X86-64

I/O

Nodes

Lustre

Appliance

CLE

gNI

MDS

Lustre

esFS OST

OST

Customer

Filesystem

NFS

GPFS

Panasas

(DVS)

Programmers

Linux Environment

Development tools

Workload Manager

Cray Programming

Environment

 Compilers

Debugging Tools

 Performance Tools

ALPS Launch

Linux

Modules

MOM

CLE

gNI

Cray High Speed Network

9

Transition

10

Compilers

11

Like HECToR will be three compilers installed, however Intel
replaces the PGI compiler.

Only the most recent versions will be available (e.g. those
released over the last few months)

● Cray Compilation Environment (CCE)
● Coincides with new 8.2 release

● Intel Composer Suite
● New compiler over HECToR

● GNU Compiler Collection
● The standard set of expected compilers and tools.

CCE Overview

12

● Cray technology focused on scientific applications

● Takes advantage of automatic vectorization

● Takes advantage of automatic shared memory parallelization

● Standards conforming languages and programming

models

● ANSI/ISO Fortran 2003 and Fortran 2008 standards compliant

● ANSI/ISO C99 and C++2003 compliant

● OpenMP 3.1 compliant, working on OpenMP 4.0

● OpenACC 1.0

● OpenMP and automatic multithreading fully integrated

● Share the same runtime and resource pool

● Aggressive loop restructuring and scalar optimization done in the
presence of OpenMP

● Consistent interface for managing OpenMP and automatic
multithreading

Improvements for CCE/8.2.0 on XC30

13

● Full support for optimising for “ivybridge” processors.

● Improved performance of performance-critical maths
intrinsics.

● New Coarray C++ template library that implements coarray
concepts to C++.

● GNU and CCE OpenMP libraries are now compatible.
Linking must be performed by CCE with PrgEnv-cray.

CCE – GNU – Intel compilers

14

● More or less all optimizations and features provided by
CCE are available in Intel and GNU compilers
● GNU compiler serves a wide range of users & needs

● Default compiler with Linux, some people only test with GNU

● Defaults are conservative (e.g. -O1)
● -O3 includes vectorization and most inlining

● Performance users set additional options

● Intel compiler is typically more aggressive in the optimizations
● Defaults are more aggressive (e.g -O2), to give better performance “out-of-

the-box”
● Includes vectorization; some loop transformations such as unrolling; inlining within

source file

● Options to scale back optimizations for better floating-point reproducibility,
easier debugging, etc.

● Additional options for optimizations less sure to benefit all applications

● CCE is even more aggressive in the optimizations by default
● Better inlining and vectorization

● Aggressive floating-point optimizations

● OpenMP enabled by default

Cray, Intel and GNU compiler flags

15

Feature Cray Intel GNU

Listing -hlist=a -opt-report3 -fdump-tree-all

Free format (ftn) -f free -free -ffree-form

Vectorization By default at -O1

and above

By default at -O2

and above

By default at -O3 or using

-ftree-vectorize

Inter-Procedural

Optimization

-hwp -ipo -flto (note: link-time

optimization)

Floating-point

optimizations

-hfpN, N=0...4 -fp-model

[fast|fast=2|precis

e| except|strict]

-f[no-]fast-math or

-funsafe-math-optimizations

Suggested Optimization (default) -O2 -xAVX -O2 -mavx -ftree-vectorize

-ffast-math -funroll-loops

Aggressive

Optimization

-O3 -hfp3 -fast -Ofast -mavx

-funroll-loops

OpenMP recognition (default) -fopenmp -fopenmp

Variables size (ftn) -s real64

-s integer64

-real-size 64

-integer-size 64

-freal-4-real-8

-finteger-4-integer-8

Compiler man pages and documentation

16

● For more information on individual compilers

● To verify that you are using the correct version of a
compiler, use:
● -V option on a cc, CC, or ftn command with CCE and Intel

● --version option on a cc, CC, or ftn command with GNU

● Cray Reference Manuals:
● C and C++: http://docs.cray.com/books/S-2179-81/

● Fortran: http://docs.cray.com/books/S-3901-81/

PrgEnv C C++ Fortran

PrgEnv-cray man craycc man crayCC man crayftn

PrgEnv-intel man icc man icpc man ifort

PrgEnv-gnu man gcc man g++ man gfortran

Wrappers man cc man CC man ftn

http://docs.cray.com/books/S-2179-81/
http://docs.cray.com/books/S-2179-81/
http://docs.cray.com/books/S-2179-81/
http://docs.cray.com/books/S-2179-81/
http://docs.cray.com/books/S-2179-81/
http://docs.cray.com/books/S-2179-81/
http://docs.cray.com/books/S-3901-81/
http://docs.cray.com/books/S-3901-81/
http://docs.cray.com/books/S-3901-81/
http://docs.cray.com/books/S-3901-81/
http://docs.cray.com/books/S-3901-81/

Interlagos/Ivybridge Comparison

17

AMD Opteron “Interlagos” Intel Xeon “Ivybridge”

Base Clock Speed 2.3 GHz 2.7 GHz

Cores per die 6 12

Dies per node 4 2

Each cores has:

 User threads 1 2

 Function group 1 SSE (vector) 1 AVX (vector)

 bits wide 128 bits wide 256 bits wide

 functional units 1 add and 1 multiply 1 add and 1 multiply

 Cache: L1 32KB 32KB

 Cache: L2 512KB 256KB

L3 Cache (per die) 6 MB 30 MB

Total Cache per core 1.5 MB 2.75 MB

Cache BW Per core (GB/s)

 L1/L2/L3 35 / 3.2 / 3.2 100 / 40 / 23

Stream TRIAD BW/node 52 Gbytes/s 100 Gbytes/s

Peak DP FLOPs per core 4 flops/clk 8 flops/clk

Peak DP FLOPs per node 294 GFlops 518 GFlops

Main memory latency 110ns 82ns

Cray XC30 Compute Node

NUMA Node 1 NUMA Node 0

Cray XC30 Intel® Xeon® Compute Node

18

The XC30 Compute node
features:

● 2 x Intel® Xeon®
Sockets/die
● 12 core Ivybridge

● QPI interconnect

● Forms 2 NUMA nodes

● 8 x 1833MHz DDR3
● 8 GB per Channel

● 64 GB total

● 1 x Aries NIC
● Connects to shared Aries

router and wider network

● PCI-e 3.0

Intel® Xeon®

12 Core die

Aries

Router

Intel® Xeon®

12 Core die

Aries NIC

32GB 32GB

PCIe 3.0

Aries

Network

QPI

DDR3

Intel® Xeon® Ivybridge 12-core socket/die

19

DDR3 Memory Controller

Core

Core

Core

Core

Core

Core

Shared

L3 Cache

Core

Core

Core

Core

Core

Core

QPI PCIe-3.0 System

8GB 8GB 8GB 8GB

Socket/die

Quick Path

Interconnect

(inter die)

External I/O

(Aries)

Ring bus

4 x 1866 MHz

DDR3 Channels

Core

Intel Xeon Ivybridge Core Structure

20

● Manufactured on a 22nm
Process

● 256 bit AVX Instructions
(4 double precision
floating point)
● 1 x Add

● 1 x Multiply

● 1 x Other

● 2 Hardware threads
(Hyperthreads)

● Peak DP FP per node
8FLOPS/clock

32KB D1(8-Way)

32KB I1 (8-Way)

2
5
6
K

B
 L

2
 (

8
-W

a
y
)

Fetch

Decode

Scheduler

LSU LSU ALU ALU ALU

AVX

Add

AVX

Mul
AVX

Shuf 3
0
M

B
 S

h
a
re

d
 L

3
 (

1
6
-W

a
y
)

Placement and Scheduling

21

Scheduling and Placement

22

There are always two stages to launching a job on a Cray
XC30 with a batch scheduler.

1. Requesting the right amount of resource from the batch
scheduler

2. Launching the parallel application on the allocated
compute nodes

Both of these stages have been affected by upgrades to
software and hardware when compared to Cray XE6

Glossary of terms

23

PE/Processing Element

● A discrete software process with an individual address space. One PE is
equivalent to:

1 MPI Rank, 1 Coarray Image, 1 UPC Thread, or 1 SHMEM PE

Threads

● A logically separate stream of execution inside a parent PE that shares the
same address space

CPU

● The minimum piece of hardware capable of running a PE. It may share
some or all of its hardware resources with other CPUs
Equivalent to a single “Intel Hyperthread”

Compute Unit

● The individual unit of hardware for processing, may be seen described as a
“core”. Poite may provide multiple CPUs.

Hyperthreads

24

● Hyper-threads are a feature of modern Intel processors
● Essentially they are a form of hardware multithreading that avoids

costly context switches.

● Designed to mask long pauses in execution, e.g. network
communication, memory accesses.

● Allows OS to schedule two processes (PEs)
simultaneously on the same hardware core (Compute unit)
● Each thread context is held in hardware and scheduled automatically

(virtuall no overhead of a context switch)

● The Cray XC30 software and hardware stacks provide full
support for using Hyperthreads.
● 48 CPUs visible to the OS

● CPUs 0-11 & 24-35 on Socket 0

● CPUs 12-23 & 36-47 on Socket 1

● Shared compute unit pairs of CPUs are 0&24, 7&31, 8&32 and 15&39 etc.

Cray XC30 Compute Node

NUMA Node 1 NUMA Node 0

Ivybridge – Single Stream Mode

25

An Ivybridge XC30 blade has
two sockets, each with 12 Intel
Cores. Each Intel core is
termed a “Compute Unit”.

In “Single stream” mode we
elect to use only one
Hyperthread (CPU) from each
of these “Compute Units”

This means there is a total of
24 “CPUs” per node.

Therefore , without
oversubscribing, there can
only be a maximum of 24 PEs
and threads assigned to one
node.

Intel® Xeon®

12 Core die

Aries

Router

Intel® Xeon®

12 Core die

Aries NIC

32GB 32GB

PCIe 3.0

Aries

Network

QPI

DDR3

Users can choose whether to use single or dual stream
mode at runtime using aprun’s “-j1” or “-j2” options.

“-j1” is single stream mode where, aprun binds PEs and
ranks to the 24 Compute Units (e.g. only use CPUs 0-23)

24 25 26 27 28 29 30 31

Ignore Hyperthreads “-j1” Single Stream Mode

26

0 1 2 3 4 5 6 7

NUMA Node 0

CPUs 24-47

Ignored

 Hyperthread

pair /

Compute

Unit

32

8

33

9

34

10

35

11

36 37 38 39 40 41 42 43

12 13 14 15 16 17 18 19

NUMA Node 1

44

20

45

21

46

22

47

23

Default Binding - CPU

27

● By default aprun will bind each PE to a single CPU for the
duration of the run.

● This prevents PEs moving between CPUs.

● All child processes of the PE are bound to the same CPU

● PEs are assigned to CPUs on the node in increasing order
from 0. e.g.

0

0

1

1

2

2

23

23 …

0

24

1

25

2

26

23

47 …

Node 1 Node 0

1 Software PE

is bound to

1 Hardware CPU
aprun –n 48 –N 24 –j1 a.out

Default Thread Binding (pt 1)

28

● You can inform aprun how many threads will be created by
each PE by passing arguments to the –d (depth) flag.

● aprun does not create threads, just the master PE.

● PEs are bound to the a single CPU and reserve space
according to the depth argument, e.g

0

0

1 2

1

22

11 …

Node 0

1 Software PE

is bound to

1 Hardware CPU

aprun –n 24 –N 12 –d2 –j1 a.out

23 0

12

1 2

13

22

23 …

Node 1

23

● Each subsequently created child processes/thread is
bound by the OS to the next CPU (modulo by the depth argument).
e.g.

● Each PE becomes the master thread and spawns a new
child thread. The OS binds this child thread to the next
CPU.

Default Thread Binding (pt 2)

29

0

0.0

1 2

1.0

22

11.0 …

Node 0

OMP_NUM_THREADS=2
aprun –n 24 –N 12 –d2 –j1 a.out

23 0 1 2 22

…

Node 1

23

0.1 11.1 12.0 12.1 23.0 23.1 13.0

BEWARE – Intel Helper Threads

10/3/2013 Cray Inc. Property
30

● The Intel OpenMP runtime is different to GNU and CCE.
● It creates an extra thread as a shepherd … (n+1 threads spawned)

● It also has it’s own method of binding to CPUs (KMP_AFFINITY)

● Unfortunately both of these options can make things more
complicated on Cray XC30 with aprun binding features.

● Cray’s default advice…
● Don’t use KMP_AFFINITY to bind threads:

● export KMP_AFFINITY=disabled
● aprun –cc [numa_node|none] <exe>

● Study man aprun in detail

● Contact the helpdesk/Centre of Excellence

Intel® Xeon®

12 Core die

Cray XC30 Compute Node

NUMA Node 1 NUMA Node 0

Ivybridge – Dual Stream Placement

31

The alterative mode is “Dual
stream” mode each of these
“Compute Units” can host two
Hyperthreads, or “CPUs”.

This means there is a total of
48 CPUs per node.

And so the maximum number
of PEs and threads that can be
assigned without
oversubscription is 48 PEs.

Intel® Xeon®

12 Core die

Aries

Router

Intel® Xeon®

12 Core die
24 Hyperthread

Aries NIC

32GB 32GB

PCIe 3.0

Aries

Network

QPI

DDR3
Intel® Xeon®

12 Core die
24 Hyperthreads

Specifying “-j2” in aprun assigns PEs to all of the 48 CPUs
available. However CPUs that share a common Compute
Unit are assigned consecutively

This means threads will share Compute Units with default binding

24 25 26 27 28 29 30 31

Include Hyperthreads “-j2” Dual Stream Mode

32

0 1 2 3 4 5 6 7

NUMA Node 0

32

8

33

9

34

10

35

11

36 37 38 39 40 41 42 43

12 13 14 15 16 17 18 19

NUMA Node 1

44

20

45

21

46

22

47

23

 Hyperthread

pair /

Compute

Unit

Some Hyperthread advice

● Pure MPI, Mix-mode/hybrid and MPMD all continue to
function as they did on Cray XE6 by default.
● Just remember that number of NUMA nodes drops to 2.

● By default, aprun will use only 1 CPU per compute unit.
● We expect this to the optimal way to run most HPC codes.

● The default mode leaves the Hyperthreads open for the
Operating System to use
● Can be used for CPU specialisation and MPI Progress engines.

● We expect only codes with low computational intensity to
benefit from actively using hyperthreads
● Others may transparently benefit from the additional OS and library

features

33

PBS Pro 12 - Requesting resources

34

● The version of PBS has changed between HECToR and
Archer (now running PBS 12)

● This is a requirement, but it also allows for several
improvements that were previously unavailable
● The numbers of queues will be significantly reduced (perhaps just 4)

● One of these queues will potentially support quick job turn-around
create a “debug” queue

● However, the upgrade has changed the way users ask for
resources from the PBS batch scheduler.
● Users will now request resources in quanta of nodes rather than MPI

ranks

● Older mpp* style notation will be rejected by the scheduler as it is no
longer accepted.

PBS Select notation

35

PBS now asks users to select “chunks” of resources for
their jobs.

This replaces the older notation so users must remove all
mppwidth, mppnppn and mppdepth statements from batch
scripts.

The simplest way to think of a chunk is as one entire node of
the XC30. Users can submit jobs requesting numbers of
nodes using:

#PBS -l select=<num_nodes>

(or via the command line qsub options)

Writing job scripts

36

ARCHER jobs will have access to new environment
variables, e.g. $NUM_NODES which contains the number of
nodes allocated to the job.

Scripts are then free to launch jobs via aprun using any
layout as long as it does not exceed the number of nodes
allocated. E.g. for generic aprun

aprun –n n -N N –d d -j j a.out

(d x N) <= (24 * j)
ceiling(n / N) <= $NUM_NODES

NB. OMP_NUM_THREADS will be set by default to 1.
All job scripts should set or unset this variable as necessary.

PBS – Fine tuning

37

PBS allows to users to specify more details about how many
PEs and OpenMP threads will run in a chunk.

Users can specify:
-l select=<#nodes>:mpiprocs=<#ppn>:ompthreads=<#threads>

On ARCHER jobs default to mpiprocs=24 and ompthreads=1.

Each job will be launched with environment variables:

$NUM_NODES=<#nodes>
$NUM_PPN=<#ppn> # copied from mpiprocs
$NUM_DEPTH=<#threads> # copied from ompthreads

Some simple examples

38

#!/bin/bash
#PBS –l select=32:mpiprocs=24:ompthreads=2
#PBS –l walltime=12:00:00

NUM_WIDTH=$[${NUM_NODES} * ${NUM_PPN}]
cd ${PBS_O_WORKDIR}

export OMP_NUM_THREADS=${NUM_DEPTH}
aprun –n ${NUM_WIDTH} –N ${NUM_PPN} –d ${NUM_DEPTH} –j2 app.exe

#!/bin/bash
#PBS –l select=64:mpiprocs=24
#PBS –l walltime=6:00:00

NUM_WIDTH=$[${NUM_NODES} * ${NUM_PPN}]
cd ${PBS_O_WORKDIR}

export OMP_NUM_THREADS=1 # Added for safety
aprun –n ${NUM_WIDTH} –N ${NUM_PPN} mpiapp.exe

The simplest example

ARCHER queues default to mpiprocs=24:ompthreads=1

Therefore this aprun will use:

aprun –n 1536 –N 24 –d 1 –j1 mpiapp.exe

39

#!/bin/bash
#PBS –l select=64
#PBS –l walltime=6:00:00

cd ${PBS_O_WORKDIR}

aprun –B mpiapp.exe

Using the Higher Memory Nodes

10/3/2013 Cray Inc. Property
40

ARCHER has one group of nodes that has 128 GB of main
memory per node.

To tell the scheduler that you require these nodes, add
bigmem=true to the select request.

e.g.

-l select=64:mpiprocs=24:ompthreads=1:bigmem=true

Libraries

41

Intel Math Kernel Library
(a potential cray-libsci alternative)

42

Intel provides the Intel Math Kernel Library (MKL) with the
composer suite.

Like cray-libsci, MKL provides sets of routines for scientific
and engineering applications (also includes financial
applications).

Routines are highly optimised for Intel’s own processors
and can offer extremely good performance.

Distributed as mutually exclusive libraries, it is not a modle.
Instead advice on linking with Intel and GNU compilers can
be found here:
http://software.intel.com/en-us/articles/intel-mkl-link-line-advisor

http://software.intel.com/en-us/articles/intel-mkl-link-line-advisor
http://software.intel.com/en-us/articles/intel-mkl-link-line-advisor
http://software.intel.com/en-us/articles/intel-mkl-link-line-advisor
http://software.intel.com/en-us/articles/intel-mkl-link-line-advisor
http://software.intel.com/en-us/articles/intel-mkl-link-line-advisor
http://software.intel.com/en-us/articles/intel-mkl-link-line-advisor
http://software.intel.com/en-us/articles/intel-mkl-link-line-advisor
http://software.intel.com/en-us/articles/intel-mkl-link-line-advisor
http://software.intel.com/en-us/articles/intel-mkl-link-line-advisor
http://software.intel.com/en-us/articles/intel-mkl-link-line-advisor
http://software.intel.com/en-us/articles/intel-mkl-link-line-advisor
http://software.intel.com/en-us/articles/intel-mkl-link-line-advisor

Linking with MKL and PrgEnv-cray

43

● PrgEnv-cray compatible with sequential, not threaded, MKL

● Assume you have loaded the intel module as well as cce (this
defines the $INTEL_PATH)
● Typical case: You want to use MKL BLAS and/or LAPACK

-L ${INTEL_PATH}/mkl/lib/intel64/ \
-Wl,--start-group \
-lmkl_intel_lp64 -lmkl_sequential -lmkl_core \
-Wl,--end-group

● Another typical case: You want to use MKL serial FFTs/DFTs
Same as above (need more for FFTW interface)

● A less typical case: You want to use MKL distributed FFTs
-L ${INTEL_PATH}/mkl/lib/intel64/ \
-Wl,--start-group \
-lmkl_cdft_core -lmkl_intel_lp64 -lmkl_sequential \
-lmkl_core -lmkl_blacs_intelmpi_lp64 \
-Wl,--end-group

● The Intel MKL Link Line Advisor can tell you what to add to your
link line
● http://software.intel.com/sites/products/mkl/

http://software.intel.com/sites/products/mkl/
http://software.intel.com/sites/products/mkl/

● MPI on XC behaves essentially the same as MPI on XE

● uGNI interface is the same for XE and XC

● MPICH3 code base is nearly the same

● Messaging Paths (VSHORT, EAGER, RENDEZVOUS) are Identical

● Enhanced Features for XC

● Modified MPI Asynchronous Progress Engine Threads

● Threads can be placed on unused Intel hyper thread cores

● XC Hardware Collective Engine (CE)

● XC supports hardware-offload of Barrier & Allreduce collectives

● Invoke these via MPICH_USE_DMAPP_COLL env variable

● Must also link libdmapp into your application directly.

MPI Features / Functionality for XC

2013 - Cray Proprietary
44

● Used to improve communication/computation overlap

● Each MPI rank starts a “helper thread” during MPI_Init

● Helper threads progress MPI engine while application
computes

● Only inter-node messages that use Rendezvous Path are
progressed (relies on BTE for data motion)

● To enable on XC when using 1 stream per core:
● export MPICH_NEMESIS_ASYNC_PROGRESS=1

● export MPICH_MAX_THREAD_SAFETY=multiple

● export MPICH_GNI_USE_UNASSIGNED_CPUS=enabled

● Run application: aprun –n XX a.out

● To enable on XC when using 2 streams per core recommend
running with the corespec option:

● export MPICH_NEMESIS_ASYNC_PROGRESS=1

● export MPICH_MAX_THREAD_SAFETY=multiple

● Run application with corespec: aprun –n XX -r [1-2] a.out

● 10% or more performance improvements with some apps

MPI - Async Progress Engine Support

Non Blocking MPI (inc MPI-3)

46

1

10

100

1000

10000

100000

4 64 1024 16384 262144 4194304

A
v
e

ra
g

e
 c

o
m

p
le

ti
o

n
 t

im
e

 [
µ

s
]

Reduction size [B]

Collective computation,4096 PE's

MPI

MPI Non-block

-10

0

10

20

30

40

50

60

70

80

8 16 32 64 128 256 512 1024 2048 4096

O
v
e

rl
a

p
 a

v
a

il
a

b
il

it
y
 [

%
]

Reduction size [B]

Data courtesy of P. Manninen Cray Finland

CPU Specialisation

47

● Despite the low-noise nature of the XC30’s CNL Linux OS
it occasionally is necessary to run OS/kernel/daemon
processes on CPUs.

● If all CPUs are in use then the OS must swap a user
process out to execute the OS/kernel/deamon process.

● Normally this introduces only a small amount of noise to
the application which evens out over the length of the run.

● However, there are certain pathological cases which
amplify these delays if there are frequent
synchronisations between nodes (e.g. collectives)
preventing scaling.

● CPU specialisation reserves some CPUs for the
OS/system/daemon tasks (like OS, MPI progress engines,
daemons). This improves overall performance

CPU Specialisation (pt 2)

48

● On the XC30 the reserved CPU’s are automatically chosen
to be from any unused CPUs on Compute Units (e.g. spare
Hyperthreads), even if “-j1” has been selected.

● Users specify how many CPUs to reserve by adding a “-r
<CPUs>” flag to the aprun command. The sum total of “-r”
and “-N” must not exceed 48 (the total number of CPUs on
the node). E,g

 aprun –n 1024 –N 24 –r 8 –j 1 a.out

● Required for use with MPI environment variables,
MPICH_GNI_USE_UNASSIGNED_CPUS and
MPICH_NEMESIS_ASYNC_PROGRESS flags.

Hyperthreading optimization chart

49

Single Stream Mode – No MPI
Async:

Collect performance baseline here

Maximize per cpu performance

Little MPI communication overlap
for medium size messages

Dual Stream Mode – With MPI Async

Goals:
Optimizing per node perf. or

Maximizing perf. using many Pes
and

Improve communication
performance…

But give up using 1 or 2

hyperthreads

Is this “better”?

Single Stream Mode –

With MPI Async

Goals:

Maximize per cpu performance

Improve communication
performance

Does overall performance improve?

Dual Stream Mode –

Without MPI Async

Goals:
Optimizing per node performance

or
Maximizing performance by using

many PEs

Is this “better”?

How to get more help

50

● Support website: http://www.archer.ac.uk

● Cray XC30 Advanced Tools Workshop
Edinburgh @ EPCC
28th – 29th January 2014

http://www.archer.ac.uk/

