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Motivation
• Update ARCHER benchmarks to represent current and future 

use
• Exercise HPC systems at scale with real applications and use 

cases
• Involve user community in proposing benchmarks and 

providing cases
• Compare different HPC systems around the UK (and beyond)
• Provide information to users:

• Measured performance variation
• Reference application profiles
• Effect of new versions, compilers and/or libraries



Previous Benchmarks

• Analyse current use
• Propose to research councils and major user groups
• Gather feedback and produce final proposal

Selection Process

• CASTEP: Periodic electronic structure (Fortran, MPI+OpenMP) 
• CP2K: Periodic electronic structure (Fortran, MPI+OpenMP)
• DL_POLY: Classical molecular mechanics (Fortran, MPI+OpenMP)
• SENGA: CFD with combustion (Fortran, MPI)
• Met Office UM: Climate modelling (Fortran, MPI+OpenMP)



Current Use
• CASTEP, CP2K, UM 

still high usage
• SENGA low usage 

(< 2%)
• DL_POLY < 1% 

usage

• Biomolecular 
simulation are 
heavily used 
(GROMACS/NAMD)

• C++ compilers 
should be stressed 
by benchmarks



Feedback from user groups
• CFD community proposed OpenSBLI as the application 

that will be most representative of future work
• Tests domain-specific language (DSL) setup

• Materials modelling community asked for both CASTEP 
and CP2K to be kept as they operate in different ways

• Climate and ocean modelling communities asked for 
coupled model (OASIS3+UM+NEMO) to replace UM
• Benchmark should include I/O component of application

• Accepted that GROMACS should replace DL_POLY
• Stresses C++ compiler and represents biomolecular simulation 

community



Benchmark Set
• CASTEP

• DNA, 1536 atoms in large simulation cell
• CP2K

• Bulk LiH, hybrid functional
• OpenSBLI

• Taylor-Green vortex on a 1024x1024x1024 grid
• GROMACS

• 42 million atom simulation
• OASIS3

• Includes UM (atmosphere) and NEMO (ocean)
• See: http://www.archer.ac.uk/documentation/white-

papers/benchmarks/UK_National_HPC_Benchmarks.pdf



Systems benchmarked so far
• Cray XC30
• 2x 2.7 GHz 12-core Xeon “Ivy Bridge” per 

node
• 64 GiB DDR3 RAM per node
• Cray Aries interconnect, dragonfly topology

• HPE/SGI ICE XA
• 2x 2.1 GHz 18-core Xeon “Broadwell” per 

node
• 256 GiB DDR4 RAM per node
• Infiniband FDR interconnect, hypercube 

topology

Benchmark data: http://www.archer.ac.uk/community/benchmarks/archer/



Results: GROMACS



Results: OpenSBLI



Results: OpenSBLI speedup



Results: CP2K



Results: CASTEP



Conclusions so far
• Broadwell Xeon do not give obvious boost over Ivy Bridge

• (At low core core counts most are memory bound.)
• Increase in memory bandwidth is balanced by increased core 

count?
• Performance converges as core count increases

• Applications become communication bound
• Interconnect latencies and bandwidths are similar

• CASTEP shows very poor performance on Cirrus
• Software issue with AlltoAll collective in SGI stack? Or Cray stack 

is very good at this? Or something else?
• Currently investigating…



Next steps
• Continue investigations into CASTEP performance

• Run on other Tier-2 Broadwell Xeon systems
• Benchmark MPI collective performance

• Run OASIS benchmark
• Only just become available

• Automatic, periodic runs of benchmarks 
• Track variations in performance

• Produce profiles of applications running benchmarks
• Provide additional information for users and developers
• Identify where differences lie between platforms



KNL Performance Comparison
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Motivation
• Compare performance of ARCHER Xeon nodes to KNL 

nodes
• For naïve porting effort rather than large amounts of work
• Gives an idea of performance levels that real users would see

• Broad overview of different codes
• User engagement with KNL test facility
• Provide useful small benchmarks to compare range of 

technologies
• Meets a different need to the scaling benchmarks previously 

mentioned – mostly comparing node-level performance here



Sample results: CP2K

Fiona Reid, EPCC



Sample results: NAMD



Results: UCNS3D
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Conclusions so far
• Portability quite simple for most applications
• Some applications do worse on KNL than Xeon…
• …some do about the same…
• …and some do better on KNL than Xeon

• (note this is comparison to old Xeon processor)
• Applications that are memory bound and can fit well in 

HBM as cache see good performance
• Without large amounts of application re-writing

• People report performance in lots of different ways!
https://www.epcc.ed.ac.uk/blog/2017/05/11/archer-developers-and-presenting-

performance



Next steps
• Profile selected applications on KNL and on Xeon

• Where are differences and similarities?
• Compare performance on other Tier-2 systems

• Compare different processors
• Do different node architectures make a difference?

• Reports at: http://www.archer.ac.uk/community/benchmarks/archer-knl/



Parallel I/O benchmarking
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Motivation
• I/O performance is becoming more critical for HPC 

application performance as applications scale up
• Many applications now have an I/O-bound phase

• What is the maximum performance you can expect from 
the ARCHER parallel file systems in production?
• Compared to other HPC parallel I/O setups?

• What are the best file layouts and Lustre striping settings 
for different scenarios?

• How do MPI-IO, NetCDF and HDF5 write performance 
compare?
• …and how do they compare to naïve file-per-process?



Benchmarks



Benchmarks: benchio (SSF)
• Simple Fortran program:

• Writes 3D distributed dataset to single shared file (SSF)
• MPI-IO, HDF5, NetCDF

• Advantages:
• Small number of options: dataset size, number of processes, 

simple to understand what program is doing
• Data distribution closer to many I/O-bound user applications

• Disadvantages:
• Write performance only (read added soon)

• https://github.com/EPCCed/benchio



Why not use IOR?
• IOR is like Linpack

• data decomposition designed to measure maximum IO bandwidth
• imagine 64 data elements on 8 processes
• IOR file: 8 large blocks of 8 contiguous items:

• benchio uses more realistic (but still simple) decomposition
• leads to surprisingly complicated IO patterns

• Imagine 4x4x4 grid split evenly across 8 processes (2x2x2)
• benchio file contains multiple interleaved small blocks of 2 items



Benchmarks: benchio_fpp (FPP)
• FPP = File Per Process
• Derived from benchio:

• Each process writes to own Fortran binary file
• No HDF5, NetCDF support yet

• Need to be careful to ensure that buffering is not used by 
writing large amounts of data per process
• MPI-IO bypasses buffering so not a problem for SSF version



Systems and Setup



Systems
• ARCHER

• Cray Sonexion Lustre
• Theoretical peak bandwidth: 30 GiB/s

• COSMA5
• DDN GPFS
• Theoretical peak bandwidth: 20 GiB/s

• Also small-scale systems (results not included here)
• RDF – DDN GPFS, single node
• JASMIN – PANASAS, small process counts



Benchmark setup
• Single Shared File (SSF)

• MPI-IO collective
• 128 MiB written per process
• Lustre stripe counts: 1 (unstriped), 4 (default), -1 (maximum)
• Lustre stripe sizes: 1 MiB, 4 MiB, 8 MiB

• File Per Process (FPP)
• Fortran binary write (STREAM)
• 1024 MiB written per process (i.e. per file)
• Lustre stripe counts: 1 (unstriped), 4 (default), -1 (maximum)
• Lustre stripe sizes: 1 MiB



Benchmark setup (cont.)
• MPI-IO collective operations used in all cases

• Previous experience shows that this is required for performance
• All compute nodes fully populated

• This is typically how users use the system
• All runs performed during production

• Subject to same contention as all users



Single Shared File (SSF)
MPI-IO Comparisons



SSF: ARCHER Lustre



SSF: Lustre/GPFS Comparison



File Per Process (FPP)
Fortran Binary File Comparisons



FPP: ARCHER Lustre



FPP: Lustre/GPFS Comparison



SSF vs. FPP
Comparisons



SSF vs. FPP: max. peformance



SSF vs. FPP
• Simple file-per-process gives better performance at lower node 

counts…
• …and is similar to shared file at higher node counts

• Should always use single striping for FPP on ARCHER:
• Get random failures due to excessive metadata operations otherwise

• Disadvantages to FPP:
• You will probably have to reconstruct the data for any analysis
• For checkpoints, you must use identical decomposition

• FPP worth considering if you can live with constraints
• Both schemes achieve a maximum of ~50% of peak for both 

GPFS and Lustre in production



SSF vs. FPP (cont.)
• SSF can give excellent performance:

• Each I/O client (node) writes a single block of data
• Usually requires significant internal communication to reorganise

data layout
• Contingent on using well written parallel I/O libraries to perform this 

reorganisation…
• …and this requires parallel collective I/O (without this the 

performance can be orders of magnitude less)
• Advantage that data is often in a format that can be analysed or 

reused at the end of the simulation



Summary
• File-per-process is simple and performs well up to high 

node counts
• Probable cost in data reconstruction
• May be useful for pure checkpointing

• Shared file competitive at high node counts
• Must use MPI-IO collectives
• Must use maximum stripe count on Lustre
• Stripe size has small effect

• Maximum of ~50% peak file system performance 



Further Work
• Understand where ~50% maximum performance limit 

comes from
• Analyse results for HDF5 and NetCDF
• Extend benchio to benchmark read performance
• Run I/O-bound application benchmarks
• Analyse automatically-gathered Lustre performance 

statistics


