

QuEST and the importance of the interconnect in large scale quantum circuit simulations

Anna Brown anna.brown@oerc.ox.ac.uk

Representing a quantum computer clasically

Qubits are in a superposition of $|0\rangle$ and $|1\rangle$ states, with a complex probability amplitude associated with each state

2 qubit State =
$$c^{1}|00> +$$
 $c^{2}|01> +$
 $c^{3}|10> +$
 $c^{4}|11>$

Sum over all probabilities:

$$\sum_{n=1}^{N} |c^n|^2 = 1$$

Memory requirements are huge

• 2^(number of qubits) complex double precision floating point values

For a 44 qubit system =2⁴⁴ x 2 x 8 bytes =256TB

For a 45 qubit system $=2^{45} \times 2 \times 8$ bytes =512TB

Initial solution: Single node with 6TB of memory

Our users

https://qtechtheory.org/

QuEST for MPI, OMP, GPU

MPI communication pattern for an 8 compute node system

Archer weak scaling

Infiniband weak scaling

