
Dakota User’s Guide on ARCHER

Gordon Gibb, EPCC

Version 1.0, March 22, 2017

https://www.epcc.ed.ac.uk/about/staff/dr-gordon-gibb

2 Dakota User’s Guide

Contents

1. Introduction to Dakota 2

2. Using Dakota 5

2.1. Running Dakota . 5

2.2. Dakota Input Files . 6

2.3. Interfacing a Simulation with Dakota Using Scripts 6

2.4. ARCHER Use Cases . 8

3. Examples 10

3.1. Use Case 1: Multidimensional Parameter Study 10

3.2. Use Case 2: Optimisation Using a Genetic Algorithm 15

3.3. Use Case 3: Uncertainty Quantification 18

3.4. Use Case 4: List Parameter Study . 21

4. Tips and Recommendations 26

4.1. General Tips . 26

4.2. Running Dakota on the MOM Nodes . 26

1. Introduction to Dakota

Dakota[1] is a toolkit that automates running a series of simulations whose input param-

eters can be varied in order to determine their effects on the simulation results. In par-

ticular, Dakota can be used to determine optimal parameter values, or quantify a model’s

sensitivity to varying parameters. The following classes of algorithm are currently sup-

ported by Dakota:

• Parameter Studies - For a list of parameter values to explore, Dakota will run a

series of simulations using these given parameters and will tabulate the results.

• Design Of Experiments - Similar to parameter studies, but designed to achieve good

coverage of the parameter space with minimal simulations.

https://dakota.sandia.gov

Dakota User’s Guide 3

• Uncertainty Quantification - Given an uncertainty on an input parameter (or several

input parameters), Dakota will quantify the uncertainty of the simulation outputs.

• Optimisation - Dakota can find the best parameter/set of parameters to optimise a

response function from a simulation.

• Calibration - Attempt to maximise agreement between simulation outputs and ex-

perimental data.

For more details, please refer to the Dakota User’s Manual[4].

Virtually any simulation can be interfaced with Dakota, which treats a simulation

code as a ‘black box’ that it feeds inputs (parameter values) into and receives outputs

(response functions) from. The simplest way to interface a simulation with Dakota is

through passing files between the simulation code and Dakota. In this case, Dakota will

produce a parameter file and launch a user-written script that reads in the parameter file,

parses it, and produces simulation input file(s). The script then launches the simulation,

and once the simulation has completed, runs some post-processing on the simulation’s

results, returning the results to Dakota via a results file. Figure 1 outlines this approach.

It is also possible to directly interface a simulation code with Dakota, however this re-

quires knowledge of the Dakota source code, and is beyond the scope of this document.

Interested readers can find out more about this in the Dakota Developer’s Manual[2]

For some algorithms, the number of simulations that must be carried out and sets of

parameters that must be investigated are known before Dakota is run. An example of this

would be a parameter study, where the researcher knows which sets of parameters they

wish to investigate. In these cases, Dakota merely automates the process of setting up,

running, and tabulating the results of the simulations. Dakota’s real power lies in cases

where the number of simulations required, or the parameter values to be tested are not

known beforehand. In this case, Dakota can automatically choose the parameters to be

used for subsequent simulations (based upon whichever algorithm is being employed),

and runs them. An example of this would be an optimisation algorithm, where the choice

of parameters for the n + 1th simulation may be dependent on the results of the nth simula-

tion. This Dakota functionality removes the need for a researcher to manually choose the

https://dakota.sandia.gov/sites/default/files/docs/6.4/Users-6.4.0.pdf
https://dakota.sandia.gov/content/64-developers-manual

4 Dakota User’s Guide

Figure 1: Flowchart describing how Dakota interfaces with a simulation. Dakota pro-
duces a parameter file, which is pre-processed into a simulation input file. The simulation
code is then run, and its output file is then post-processed into a results file that is read
in by Dakota, which can then start a new simulation with a new set of parameters if
necessary. The portion of the flowchart contained within the dashed-line box is usually
contained within an interface script, which handles preprocessing, simulation launching,
and postprocessing.

Dakota User’s Guide 5

parameters for subsequent simulations, prepare the input files, and run the simulations –

saving them much time and effort.

This document is not intended to provide the reader with a complete understanding

of all of Dakota’s functionality and use cases, but rather to provide motivation for why

Dakota may be applicable to their work, and how to set up their simulations and Dakota

runs to work on ARCHER. For full details on Dakota and its functionality, please refer

to the Documentation page on the Dakota website. A quick guide to use Dakota, and in

particular the various use cases of Dakota on ARCHER will be outlined in Section 2.. A

series of example scripts will be provided in Section 3. to cover the use cases outlined

in Section 2.. Finally, some recommendations on how to get the most out of Dakota on

ARCHER will be given in Section 4.

2. Using Dakota

2.1. Running Dakota

In order to run Dakota, it must have an input file which specifies the problem that Dakota

is to solve and how to run a simulation. Optionally, an output file can be specified into

which Dakota puts its output, and an error file into which any error messages go. If these

files are not specified, dakota will send its output and error to standard output and error

respectively. The run syntax for Dakota is:

dakota -i [input file] -o [output file] -e [error file]

When Dakota runs, it produces a restart file (‘dakota.rst’ by default) so that a dakota run

can be restarted in the event of it being interrupted halfway through. In order to restart

Dakota, use

dakota -i [input] -o [output] -e [error] -read_restart dakota.rst

On ARCHER, Dakota is available as a module. To access Dakota, use

module load dakota

6 Dakota User’s Guide

2.2. Dakota Input Files

This subsection will describe the basic layout of an input file, however for full details

on writing an input file, please read the Dakota User’s Manual[4]. Dakota’s input files

are plain text files, with instructions put into a number of blocks. Some frequently used

blocks are entitled environment, method, variables, interface and responses.

Comments in the file are supported, and are initiated with a #. White space/indentation is

not required, however it is useful for readability.

The environment block describes the general settings for Dakota, such as whether it

should produce any additional output (such as tabulated values of the simulation param-

eters and response functions). The method block specifies the kind of study Dakota is to

carry out, and specifies any options related to that study. The variables block specifies

the variables in the simulation, such as parameters that Dakota can vary. The interface

block describes how Dakota interfaces with a simulation code. Finally, the responses

block specifies the response functions that the simulation returns to Dakota. There are

several other blocks that can be used, however these are only necessary for certain kinds

of study, and information about them can be found in the Dakota User’s Manual[4]. An

example Dakota input script is displayed in Figure 2.

2.3. Interfacing a Simulation with Dakota Using Scripts

As mentioned in Section 1., the simplest way to interface a simulation with Dakota is

through the use of a script. This automates taking the simulation parameters from Dakota,

producing a simulation input/configuration file, running the simulation, extracting the

simulation’s results and returning them to Dakota. Such an interface is shown in the

example Dakota input file in Figure 2, and is known as a ‘fork’ interface. When using this

interface, information is passed between Dakota and the script via two files: a parameter

file and a results file. The names of these files are provided to the script as arguments.

Dakota comes with a tool called dprepro which parses the parameter file produced

by Dakota and creates an input file for the simulation. In order to do this, a template file

must be provided, which specifies the layout of the simulation’s input file. In the template

https://dakota.sandia.gov/sites/default/files/docs/6.4/Users-6.4.0.pdf
https://dakota.sandia.gov/sites/default/files/docs/6.4/Users-6.4.0.pdf

Dakota User’s Guide 7

An example Dakota input file

environment

tabular_data

method

multidim_parameter_study

partitions = 11 13

variables

continuous_design = 2

lower_bounds 0. -2.5

upper_bounds 1. 3.25

descriptors ’a’ ’b’

interface

fork

analysis_driver=’script.sh’

parameters_file=’params.in’

results_file=’results.out’

responses

objective_functions = 3

no_gradients

no_hessians

Figure 2: An example Dakota input file. In this example, Dakota is asked to tabulate
its results of a multi-dimensional parameter study. The study investigates two variables,
named ‘a’ and ‘b’, whose values range between [0, 1] and [−2.5, 3.25] respectively. The
study will look at twelve values of ‘a’, and fourteen values of ‘b’. Dakota will run the
simulation using a system call (fork) to the script ‘script.sh’. Dakota will pass parameter
values into this script via the file ‘params.in’, and the script will pass simulation results
into Dakota via the file ‘results.out’. Finally, the simulation is expected to produce three
objective functions, none of which are gradients or Hessians.

8 Dakota User’s Guide

file, where the parameter value is to be inserted, the value is replaced by the name of the

parameter (as specified in the Dakota input file) in curly braces. For example, if the

simulation’s parameter/configuration file takes three parameters as an input, ‘a’, ‘b’ and

‘c’, then the template file may look like:

a = {a}

b = {b}

c = {c}

and dprepro will automatically replace the items inside the curly braces with the values

of ‘a’, ‘b’ and ‘c’ from Dakota’s parameter file. The syntax for dprepro is:

dprepro [Dakota param file] [template] [simulation param/config file]

Once the simulation has finished, the script should apply some post-processing to

extract the response functions from the simulation’s results and produce the results file

which is read by Dakota. This results file should contain the response functions separated

by spaces. For example, if the simulation produces two response functions, equal to

3.14159 and 2.71828, then the Dakota results file should be:

3.14159 2.71828

2.4. ARCHER Use Cases

As mentioned in Section 1., the power in Dakota lies in its ability to automatically run

simulations in order to carry out a study. Dakota is also capable of running multiple

concurrent simulations, which on a large parallel system such as ARCHER can speed up

carrying out such a study. Dakota may be used on the login nodes, the MOM nodes, or

on compute nodes. The kind of node it is run on depends on the use case. On ARCHER

there are four main parallel use cases for Dakota:

1. Run many concurrent single/few-core (shared-memory) simulations.

2. Run many concurrent short (on the order of a few hours) multi-processor/node

simulations.

Dakota User’s Guide 9

3. Run many consecutive short (on the order of a few hours) multi-processor/node

simulations.

4. Run consecutive large (uses many nodes and/or runs for a very long time) multi-

node simulations, or run many simulations that each require different core-counts

(e.g. a speedup analysis).

The Dakota executable supports being run in parallel, and so can be run on the com-

pute nodes via aprun. Every Dakota process can be used to launch a serial or a shared-

memory (OpenMP or Pthread) simulation. This is the approach that should be used in

Use Case 1. When running on the MOM nodes, dakota can launch MPI simulations us-

ing aprun. To do this, the user would submit a job using Dakota, requesting a number

of nodes. Dakota will then run on the MOM node, and launch simulations as necessary

using an aprun command in the interface scripts. In such a way, it can either run multiple

concurrent multi-process/node simulations, each using a fraction of the nodes requested

(Use Case 2), or it can run consecutive multi-process/node simulations using all of the

nodes requested (Use Case 3). On a login node, Dakota can only submit jobs via qsub,

which is placed inside the interface script. In such a case, Dakota should be called twice;

once to get it to provide parameters to the simulation and submit a job to the queue, and

a second time once the simulation has finished to return the results to Dakota. This ap-

proach (Use Case 4) should be used if each simulation that is to be carried out by Dakota

takes a very long time to run (approaching 24h) so that it would be impractical to use

Use Case 3 as only one simulation would be able to run per job. Additionally, if a study

requires running simulations with different core counts then Use Case 4 is most suitable,

since applying Use Cases 2 and 3 to such a study could waste compute time due to the

nodes reserved for the study being under-utilised during some runs. Examples of each

use case (and the corresponding files) will be given in Section 3..

10 Dakota User’s Guide

3. Examples

In this Section example scripts, Dakota input files and PBS batch scripts will be given for

each use case from Section 2.4.. They will also cover a number of different algorithms

that Dakota has to offer.

3.1. Use Case 1: Multidimensional Parameter Study

Let us assume that we have a simulation code that runs on only a few cores at a time

(using shared-memory parallelism), and only takes a few minutes to an hour to run. We

wish to investigate how certain output values of the code vary according to a number of

input parameters. In such a case, Use Case 1 is well suited to the problem, where we can

run many small simulations in parallel.

As Dakota is launched using MPI in Use Case 1, the simulation code cannot use MPI,

since nested MPI environments are not supported. Furthermore, in order to avoid insta-

bility the executable should be compiled without linking to ARCHER’s MPI libraries. In

order to do this, use:

module swap craype-network-aries craype-network-none

then compile your code using the normal cc, CC or ftn compiler wrappers. It is normal

to get the warning message:

Warning:

libraries from PE_MPICH will be ignored because they are not

compatible with network-target=none.

when compiling. This can be safely ignored. Please note: the above steps are only

necessary for Use Case 1, as the simulation executable cannot use MPI. For the

other use cases, no special actions are needed to compile the simulation executable.

Assume that we are interested in four input parameters, a, b, c and d, where a and b are

continuous real numbers, whilst c and d are integer values. For each parameter, we wish

Dakota User’s Guide 11

to investigate ten values, resulting in a total of 10,000 simulations needed to sample all the

parameter values. The real variables both vary between 0 and 1, whilst c takes on values

of 2n, and d takes the values 10, 15, 25, ..., 55. There are three output values/response

functions of interest, x, y and z. Let us assume that each simulation requires six threads

to run optimally. We choose to run Dakota on 100 nodes, with 4 Dakota processes per

node, resulting in 400 concurrent simulations.

There are three files we need to write: a Dakota input file, a script to interface the code

with Dakota, and a PBS script to launch the job. The PBS script has to launch Dakota on

the compute nodes using aprun. Figure 3 shows the Dakota input file, Figure 4 shows

the interface script, and Figure 5 shows the PBS script.

12 Dakota User’s Guide

environment

tabular_data

method

multidim_parameter_study

#10 values of each parameter hence 9 partitions

partitions = 9 9 9 9

variables

continuous_design = 2

lower_bounds 0. 0.

upper_bounds 1. 1.

descriptors ’a’ ’b’

discrete_design_set integer = 2

num_set_values 10 10

set_values 1 2 4 8 16 32 64 128 256 512 10:5:55

descriptors ’c’ ’d’

interface

fork

analysis_driver=’case1_script.sh’

parameters_file=’params.in’

results_file=’results.out’

#Tell Dakota to use every Dakota process to run simulations

#(By default one is reserved for use as a master process)

evaluation_scheduling peer dynamic

#instructs Dakota to number files according to evaluation

#number

file_tag

responses

descriptors ’x’ ’y’ ’z’

objective_functions = 3

no_gradients

no_hessians

Figure 3: The Dakota input file (‘case1.in’) for the Use Case 1 example. This example
runs a multidimensional parameter study for four parameters, each with 10 values inves-
tigated. Two of the parameters are real numbers, and two are integers. There are three
response functions.

Dakota User’s Guide 13

#!/bin/bash

#This script is given two arguments:

- The name of the Dakota parameters file

- The name of the Dakota results file

#get dakota job number

num=$(echo $1 | awk -F. ’{print $NF}’)

topdir=‘pwd‘

workdir=$topdir/workdir.$num

#Create working directory for simulation run

mkdir workdir.$num

cd $workdir

#pre-processing

dprepro $topdir/$1 $topdir/paramfile.template paramfile

#run simulation

/path/to/executable > sim_out.txt

#post-processing

#assume in this case the simulation’s stdout is in the correct

#format for the Dakota file

cp sim_out.txt $topdir/$2

#delete working directory (optional)

cd $topdir

rm -rf $workdir

Figure 4: The interface script (‘case1 script.sh’) for the Use Case 1 example. The script
produces a new work directory for each simulation, runs the simulation and returns its
results to the Dakota results file before deleting the work directory.

14 Dakota User’s Guide

#!/bin/bash --login

#PBS -N Dakota_Case1

#PBS -l select=100

#PBS -l walltime=4:00:00

#PBS -A [budget code]

Make sure any symbolic links are resolved to absolute path

export PBS_O_WORKDIR=$(readlink -f $PBS_O_WORKDIR)

Change to the directory that the job was submitted from

(remember this should be on the /work filesystem)

cd $PBS_O_WORKDIR

module load dakota

Set the number of threads to 6

export OMP_NUM_THREADS=6

Launch Dakota parallel jobs

100 nodes with 4 per node = 400 processes

6 cores per dakota process, 2 processes per NUMA Region

aprun -n 400 -N 4 -d 6 -S 2 dakota -i case1.in -o case1.out -e case1.err

Figure 5: The PBS submission script for the Use Case 1 example. The script selects 100
nodes, each with 4 Dakota processes running on them, resulting in a total of 400 Dakota
processes (and hence 400 concurrent simulations).

Dakota User’s Guide 15

3.2. Use Case 2: Optimisation Using a Genetic Algorithm

Assume we are designing a component whose design can be described by a number of

parameters that must be optimised according to some constraint (for example, we want

to choose the angle of attack and camber of an aircraft wing so as to maximise its lift to

drag ratio). To calculate the properties of each design, a simulation that runs for around

an hour on two nodes is used. With Dakota, we can use a genetic algorithm to find an

optimal design for this component. Briefly, a genetic algorithm works by generating a

number of designs, n, and evaluating their fitness via some metric. The algorithm picks

a number, m, where (m < n), of the best designs from the original n, then combines

the features of the m designs together and mutates them to produce a new generation

of n designs. This process is then repeated for a number of generations until an optimal

design has been found. For such an algorithm, Use Case 2 is suitable because many multi-

node/many-processor simulations can be run concurrently (i.e. more than one member of

each generation can be evaluated simultaneously).

Say (for the aircraft wing) we have two input parameters (angle of attack, a, and

the camber, c) whose values can range between [−10◦, 25◦] and [0.0, 0.3] respectively.

Although we wish to maximise the lift to drag ratio, r, when optimising, Dakota aims to

minimise a response function, so in this case we want the response function to be −r. Let

us choose a generation size of 50, and have the study run for a total of 6 generations. We

choose to use 50 nodes for our study, resulting in 25 concurrent simulations.

There are three files we need to write: a Dakota input file, a script to interface the

code with Dakota, and a PBS script to launch the job. The input file has to specify that

we want Dakota to run several simulations concurrently, the interface script has to launch

jobs using aprun, and the batch script has to run Dakota on a MOM node. Figure 6

shows the Dakota input file, Figure 7 shows the interface script, and Figure 8 shows the

PBS script.

16 Dakota User’s Guide

environment

tabular_data

method

max_iterations = 6

max_function_evaluations = 500

coliny_ea

seed = 11011011

population_size = 50

fitness_type merit_function

mutation_type offset_normal

mutation_rate 1.

crossover_type two_point

crossover_rate 0.0

replacement_type chc = 10

variables

continuous_design = 2

lower_bounds -10 0.0

upper_bounds 25 0.30

descriptors ’a’ ’c’

interface

fork

asynchronous

evaluation_concurrency=25

analysis_driver=’case2_script.sh’

parameters_file=’params.in’

results_file=’results.out’

file_tag

responses

objective_functions = 1

no_gradients

no_hessians

Figure 6: The Dakota input file ‘case2.in’ for the Use Case 2 example. This example
uses a genetic algorithm to optimise a wing design such as to maximise the lift to drag
ratio. The algorithm investigates 6 generations of 50 mambers each. It is important to
note that in this file we must specify ‘asynchronous’ and ‘evaluation concurrency = 25’
in the ‘interface’ block in order to get Dakota to run multiple concurrent simulations.

Dakota User’s Guide 17

#!/bin/bash --login

#This script is given two arguments:

- The name of the Dakota parameters file

- The name of the Dakota results file

Load your required programming environment (if necessary)

module swap PrgEnv-cray PrgEnv-gnu

#get dakota job number

num=$(echo $1 | awk -F. ’{print $NF}’)

#set up topdir and workdir

topdir=‘pwd‘

workdir=$topdir/workdir.$num

mkdir workdir.$num

#move into workdir

cd $workdir

#pre-processing

dprepro $topdir/$1 $topdir/paramfile.template paramfile

#run simulation

aprun -n 48 -b /path/to/executable > sim_out.txt

#post-processing

#assume in this case the simulation produces a file ’out.dat’

#in the correct format for the Dakota file

cp out.dat $topdir/$2

#delete working directory (optional)

cd $topdir

rm -rf $workdir

Figure 7: The interface script (‘case2 script.sh’) for the Use Case 2 example. The script
produces a new work directory for each simulation, runs the simulation (using aprun) and
returns its results to the Dakota results file before deleting the work directory.

18 Dakota User’s Guide

#PBS -N Dakota_Case2

#PBS -l select=50

#PBS -l walltime=6:00:00

#PBS -A [budget code]]

cd $PBS_O_WORKDIR

module load dakota

#run dakota on the MOM node (no aprun required)

dakota -i case2.in -o dakota.out -e dakota.error

Figure 8: The PBS script for the Use Case 2 example. Note that Dakota is run on the
MOM node directly, and is not run in an aprun.

3.3. Use Case 3: Uncertainty Quantification

Assume we have a climate model where there is an uncertainty associated with two of the

model’s parameters (say the atmospheric concentrations of some aerosol particles), and

we want to quantify how our uncertainty in the concentrations affects the results of our

simulation. We can use Dakota’s uncertainty quantification capabilities to achieve this.

Using the Latin Hypercube Sampling method, Dakota evaluates the simulation results

for a number of possible parameter values, and from that estimates the range of possible

solutions given the uncertainty in the input parameters. Let us assume each simulation

uses 50 nodes and takes around two hours to run. In this case, Use Case 3 is most suitable,

whereby Dakota runs several consecutive 50 node simulations.

Let the two uncertain parameters be called p and q, where p = 0.25 ± 0.01 and

q = 7.5 ± 0.5 (assuming the uncertainties are the standard deviation (σ) of a normal

distribution). We will have Dakota sample 10 pairs of parameter values. We are interested

in two response functions, t and u. Figure 9 shows the Dakota input file, Figure 10

shows the interface script, and Figure 11 shows the PBS script that we would use for this

simulation.

Dakota User’s Guide 19

environment

tabular_data

method

id_method = ’UQ’

sampling

sample_type lhs

samples = 10

seed = 98765 rng rnum2

variables

normal_uncertain = 2

means = 0.25 7.5

std_deviations = 0.01 0.5

descriptors = ’p’ ’q’

interface

fork

analysis_driver=’case3_script.sh’

parameters_file=’params.in’

results_file=’results.out’

file_tag

responses

descriptors ’t’ ’u’

response_functions = 2

no_gradients

no_hessians

Figure 9: The Dakota input file ‘case3.in’ for the Use Case 3 example. This example uses
Latin Hypercube Sampling to determine the distribution of the simulation results t and u
given the uncertainty in the input parameters p and q.

20 Dakota User’s Guide

#!/bin/bash --login

#This script is given two arguments:

- The name of the Dakota parameters file

- The name of the Dakota results file

Load your required programming environment (if necessary)

module swap PrgEnv-cray PrgEnv-gnu

#get dakota job number

num=$(echo $1 | awk -F. ’{print $NF}’)

#set up topdir and workdir

topdir=‘pwd‘

workdir=$topdir/workdir.$num

mkdir workdir.$num

#move into workdir

cd $workdir

#pre-processing

dprepro $topdir/$1 $topdir/paramfile.template paramfile

#run simulation

aprun -n 1200 -b /path/to/executable > sim_out.txt

#post-processing

#assume in this case we have written a small program (pps) that

#reads the simulation output files and writes the Dakota

#results to stdout

./pps > $topdir/$2

#delete working directory (optional)

cd $topdir

rm -rf $workdir

Figure 10: The interface script (‘case3 script.sh’) for the Use Case 3 example. The script
produces a new work directory for each simulation, runs the simulation (using aprun) and
returns its results to the Dakota results file before deleting the work directory.

Dakota User’s Guide 21

#PBS -N Dakota_Case3

#PBS -l select=50

#PBS -l walltime=24:00:00

#PBS -A [budget code]]

cd $PBS_O_WORKDIR

module load dakota

#run dakota on the MOM node (no aprun required)

dakota -i case3.in -o dakota.out -e dakota.error

Figure 11: The PBS script for the Use Case 3 example. Note that Dakota is run on the
MOM node directly, and is not run in an aprun.

3.4. Use Case 4: List Parameter Study

Finally, let us assume we have a very large simulation (say each run requires over half

of ARCHER’s nodes, and takes ∼24h to run) for which we wish to investigate the results

for a list of different parameters. In this case we would apply Use Case 4, whereby each

simulation to be run is submitted by Dakota to the queue using qsub.

Let us assume we have 8 parameters, x1 to x8 and we wish to investigate 3 different

points within the parameter space: (x1, ..., x8) = (0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1),

(0.2, 0.5, 0.7, 0.8, 1.6, 0.2, 0.3,−0.7) and (0.9, 1.0, 6.6,−10.0, 0.0, 3.0, 5.0, 0.0). We are in-

terested in 7 response functions, y1 to y7.

In this case, we require a Dakota input file and two scripts (a pre-processing and

submission script, and a post-processing script). Dakota is run once from the login node,

with the ‘analysis driver’ in the Dakota input file set to be the pre-processing script. This

will cause Dakota to submit the simulations to the queue (and the scripts will return

dummy response functions to Dakota). Once the simulations have finished running, we

run Dakota again, but this time with the ‘analysis driver’ set to be the post-processing

script. This will make Dakota collect the results of the simulations and present them in

a table. Figure 12 shows the Dakota input file, Figure 13 shows the interface script, and

22 Dakota User’s Guide

Figure 14 shows the post-processing script.

Dakota User’s Guide 23

environment

tabular_data

method

list_parameter_study

list_of_points = 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

0.2 0.5 0.7 0.8 1.6 0.2 0.3 -0.7

0.9 1.0 6.6 -10.0 0.0 3.0 5.0 0.0

variables

continuous_design = 8

descriptors = ’x1’ ’x2’ ’x3’ ’x4’ ’x5’ ’x6’ ’x7’ ’x8’

interface

fork

#pre-processing (comment after sims have completed)

analysis_driver=’case4_script_pre.sh’

#post-processing (uncomment after sims have completed)

#analysis_driver=’case4_script_post.sh’

parameters_file=’params.in’

results_file=’results.out’

file_tag

responses

descriptors ’y1’ ’y2’ ’y3’ ’y4’ ’y5’ ’y6’ ’y7’

objective_functions = 7

no_gradients

no_hessians

Figure 12: The Dakota input file for the Use Case 4 example. When run initially, the
analysis driver is to be set to ‘case4 script pre.sh’ to submit the simulations to the queue.
After the simulations have finished, set the analysis driver to ‘case4 script post.sh’ to
complete the analysis.

24 Dakota User’s Guide

#!/bin/bash --login

#This script is given two arguments:

- The name of the Dakota parameters file

- The name of the Dakota results file

#get dakota job number

num=$(echo $1 | awk -F. ’{print $NF}’)

#set up topdir and workdir

topdir=‘pwd‘

workdir=$topdir/workdir.$num

mkdir workdir.$num

#move into workdir

cd $workdir

#pre-processing

dprepro $topdir/$1 $topdir/paramfile.template paramfile

echo ’#!/bin/bash --login’ > submit.pbs

echo ’#PBS -N dakota’ >> submit.pbs

echo ’#PBS -l select=3000’ >> submit.pbs

echo ’#PBS -l walltime=24:00:00’ >> submit.pbs

echo ’#PBS -A [budget code]’ >> submit.pbs

echo ’cd $PBS_O_WORKDIR’ >> submit.pbs

echo ’aprun -n 72000 /path/to/executable’ >> submit.pbs

#submit job

qsub submit.pbs

#return dummy values to Dakota

echo ’1.0 1.0 1.0 1.0 1.0 1.0 1.0’ > $topdir/$2

Figure 13: The job submission interface script for the Use Case 4 example, ‘case4 script -
pre.sh’. This script produces a PBS submission script, submits the job and then returns
dummy values to Dakota via the Dakota results file.

Dakota User’s Guide 25

#!/bin/bash --login

#This script is given two arguments:

- The name of the Dakota parameters file

- The name of the Dakota results file

#get dakota job number

num=$(echo $1 | awk -F. ’{print $NF}’)

#set up topdir and workdir

topdir=‘pwd‘

workdir=$topdir/workdir.$num

#move into workdir

cd $workdir

Post-processing of simulation results

(Assume simulation produces an output file, ’out.dat’

compatible with the Dakota results file)

cp out.dat $topdir/$2

Delete working directory (optional)

cd $topdir

rm -rf $workdir

Figure 14: The simulation results post-processing script for the Use Case 4 example,
‘case4 script post.sh’. This script takes the output from the simulation and returns it to
Dakota via the Dakota results script.

26 Dakota User’s Guide

4. Tips and Recommendations

We will now outline some general tips to help you run Dakota more effectively on ARCHER.

In particular we will offer suggestions and guidelines for running Dakota on the MOM

nodes so as to prevent any potential disruption to other users of the ARCHER service.

4.1. General Tips

• Writing a Dakota input file can be tricky due to the Dakota User’s[4] and Refer-

ence[3] Manuals being confusing. In order to prevent wasting CPU time and time

waiting in the queue, only for your Dakota study to fail due to an incorrect input

file, it is recommended to try out your Dakota input file (using a dummy simulation

interface script) on your local machine. Dakota binaries can be found on the Dakota

website for Windows, OS X/macOS and Linux, and are suitable for running on a

laptop.

• In order to simplify the post-processing process, it is advisable - where possible -

to modify your simulation code to output a file containing the response functions

needed by Dakota. This simplifies the interface script considerably, and also re-

duces the CPU time cost on the MOM nodes (see below).

• To carry out a speedup analysis or a similar study where the number of processes

each simulation is to be run on is a parameter to be varied by Dakota, use Use Case

4 and produce your job submission scripts with dprepro.

• Make sure that your interface script is executable - i.e. chmod +x script.sh.

4.2. Running Dakota on the MOM Nodes

The MOM nodes are a shared resource on ARCHER, and as such using too much CPU

time on them can make your job subject to automatic cancellation. Here are some tips for

how to minimise CPU usage on the MOM nodes:

https://dakota.sandia.gov/sites/default/files/docs/6.4/Users-6.4.0.pdf
https://dakota.sandia.gov/content/64-reference-manual
https://dakota.sandia.gov/content/64-reference-manual

Dakota User’s Guide 27

• In the aprun command in your interface script, use the -b argument, which pre-

vents the MOM node from compressing your executable and transferring it to the

compute nodes. Instead, the compute nodes will use the path of the executable as

specified in the aprun command. Note: your simulation executable must be located

on the work filesystem as the compute nodes cannot access the home filesystem.

• There is a limit of 500 simultaneous apruns per job on ARCHER. Please ensure,

therefore, that no more than 499 concurrent simulations are taking place in order to

avoid exceeding this limit.

• Please try to keep the pre/post-processing CPU time in the interface script to a

minimum. This could be achieved by incorporating a lot of the work into your

simulation code (which runs on the compute nodes), or by running any post/pre-

processing on compute nodes via aprun.

• Try to avoid simulations that take a very short time to run (seconds to a few minutes)

as a lot of CPU time will be used on the MOM nodes to launch the simulations and

copy files. For such simulations, Use Case 1 is more appropriate.

References

[1] Dakota Website, (Accessed 22 Mar 2017). URL https://dakota.sandia.gov.

[2] Dakota Developer’s Manual, (Accessed 22 Mar 2017. URL https://dakota.sandia.

gov/content/64-developers-manual.

[3] Dakota Reference Manual, (Accessed 22 Mar 2017). URL https://dakota.sandia.gov/

content/64-reference-manual.

[4] Brian M. Adams, Mohamed S. Ebeida, Michael S. Eldred, John D. Jakeman,

Kathryn A. Maupin, Jason A. Monschke, Laura P. Swiler, J. Adam Stephens, Dena M.

Vigil, and Timothy M. Wildey. Dakota User’s Manual, May 9 2016. URL

https://dakota.sandia.gov/sites/default/files/docs/6.4/Users-6.4.0.pdf.

https://dakota.sandia.gov
https://dakota.sandia.gov/content/64-developers-manual
https://dakota.sandia.gov/content/64-developers-manual
https://dakota.sandia.gov/content/64-reference-manual
https://dakota.sandia.gov/content/64-reference-manual
https://dakota.sandia.gov/sites/default/files/docs/6.4/Users-6.4.0.pdf

