
Using RSIP Networking with Parallel Applications

on ARCHER Phase 2

Iain Bethune, EPCC

ibethune@epcc.ed.ac.uk

Version 1.0, April 7, 2015

http://www.epcc.ed.ac.uk/~ibethune
mailto:ibethune@epcc.ed.ac.uk

2 RSIP on ARCHER

1 Introduction

When ARCHER Phase 2 was brought online in November 2014 the main change was an

expansion of the system from 16 to 26 cabinets, bringing the total number of compute

nodes to 4920, with a peak performance of 2.55 PFLOP/s. In addition, a few software

changes were also made that are less widely known. One of these was the introduction of

Realm-Specific Internet Protocol (RSIP) nodes. This white paper explains what RSIP is,

how it has been configured on ARCHER, and shows two case study applications of what

it can be used for.

2 RSIP Overview

2.1 ARCHER Network Architecture

In order to understand the use of RSIP on ARCHER, it is helpful to understand some

basic computer networking terms and concepts, as well as the current networking config-

uration of ARCHER Phase 2. A brief glossary of relevant terms in the context of TCP/IP

(Transmission Control Protocol/Internet Protocol) networking is included in Appendix

A.

As shown in Figure 1, there are three principal types of nodes, which are connected

via several different networks. For simplicity, we ignore the post-processing/serial nodes,

RDF Data Transfer Nodes (DTN), and non-user-accessible nodes such as I/O servers. The

login nodes, which is where your interactive shell session will run upon login to ARCHER

over SSH, are connected only to the external internet and to the MOM nodes. There are

actually two networks, labelled ‘bond0.2’ and ‘bond0.5’, which are separate VLANs over

the same hardware. These are sometimes referred to as the ‘external’ network in Cray

documentation. The MOM nodes are where PBS batch scripts are executed, and where

parallel jobs are launched from (via the aprun command). Users only have shell access on

the MOM nodes when running an interactive batch job (see [1], section 5.4.8 for details).

The MOM nodes have network connectivity with the compute nodes via the ‘ipogif0’

network (IP over Gemini) i.e. using the high-performance network used for inter-node

RSIP on ARCHER 3

The$Internet$

192.62.216.43$

…$

login.archer.ac.uk$

Login$nodes$ eslogin002$

192.62.216.43$

10.60.0.52$

eslogin001$

192.62.216.42$

10.60.0.51$

eslogin008$

192.62.216.49$

10.60.0.58$

…MOMnodes$ mom2$

10.10.50.62$

10.128.1.200$

mom1$

10.10.50.61$

10.128.6.14$

mom5$

10.10.50.65$

10.128.4.206$
$

…$Compute$nodes$ nid02035$

10.128.8.4$

nid00001$

10.128.0.2$

nid04991$

10.28.19.166$

…$

10.10.50.1$ 10.10.50.2$ 10.10.50.8$

10.60.0.72$ 10.60.0.73$ 10.60.0.76$

bond0.5$ bond0.2$

ipogif0$

Figure 1: Schematic of ARCHER network connectivity

communication by parallel programs, also known as the High Speed Network (HSN).

The compute nodes are where parallel applications run, and are not accessible directly by

users.

4 RSIP on ARCHER

2.2 RSIP Functionality

On ARCHER Phase 2, two compute nodes have been repurposed as RSIP servers. These

servers are connected to the ‘bond0.5’ network, and allow IP traffic to be routed from the

compute nodes through to the login nodes. In this mode of operation the compute nodes

are referred to as RSIP clients. IP socket connections can be made transparently over

RSIP, with the restriction that the connection is made from the RSIP client to the target

IP on the external network, not vice-versa. Once the connection is made data may be

transferred in both directions as normal but the connection must be established between

a client socket on a compute node and server socket on a login node.

Currently the RSIP implementation on ARCHER has not been configured to allow

domain name lookups to resolve to IP addresses that are available via RSIP, so at present

the target compute node must be referred to by IP rather than by domain name. We have

provided a script that will give the IP address for a login node, suitable for use with RSIP.

To access it, load the rsip-tools module, and run my_rsip_ip. For example:

ibethune@eslogin007:∼> module load rsip-tools

ibethune@eslogin007:∼> my_rsip_ip

10.60.0.57

The ability to communicate between a running parallel job on the ARCHER compute

nodes and another process on the login nodes enables several different types of appli-

cation, such as visualisation, and interaction with running jobs (computational steering).

RSIP also enables the use of software that require connection at runtime to a license server

(once RSIP DNS is enabled, see Section 5 for details). Examples of these applications

are shown in the following sections.

Please note: running computationality intensive applications on the login nodes is

discouraged, as these are shared by all users. Such applications may be automatically

terminated. It is however, better than running directly on the MOM nodes without using

RSIP. It may be possible to run the non-parallel part of the application on a local machine

(see Section 4), or if user interaction is not required, on an additional compute node.

These are the preferred modes of execution if they are suitable for a given application.

RSIP on ARCHER 5

3 Using RSIP

3.1 Basic network connectivity using RSIP

To illustrate the use of RSIP, we use a pair of simple client and server programs, available

from [2]. These programs are included in the rsip-tools module and can be useful to

help diagnose connectivity problems. The server is run as follows:

ibethune@eslogin006:∼> server 1234

This opens a server socket on port 1234 and waits for an incoming connection. The

port number is arbitrary, and can be anything above 1024 that is not currently in use.

Trying to open a socket on a port that is already in use will result in an error. The client

is then run as:

ibethune@eslogin007:∼> client eslogin006 1234

Note that the client is running on a different login node, and has been instructed to

connect to port 1234 on eslogin006. The client then prompts for a short message, which

is sent to the server. The server prints the message it receives, sends an acknowledgement

back to the client, and both progams exit:

ibethune@eslogin007:∼> client eslogin006 1234

Please enter the message: Hello, World!

I got your message

ibethune@eslogin006:∼> server 1234

Here is the message: Hello, World!

At this point, all we have done is communicated between two login nodes. However,

it is easy to run the client on a compute node using a PBS script:

ibethune@eslogin006:/work/z01/z01/ibethune > cat test.pbs

#!/bin/bash --login

#PBS -N rsip_test

#PBS -l select=1

6 RSIP on ARCHER

#PBS -l walltime=0:5:0

#PBS -A z01-cse

#PBS -q short

cd $PBS_O_WORKDIR

module load rsip-tools

aprun -n 1 client 10.60.0.57 1234 <<< "Message"

ibethune@eslogin006:/work/z01/z01/ibethune > qsub test.pbs

2770732.sdb

Here the client will be run on a compute node (since it is launched with aprun), and

will connect back to the server running on login node eslogin007 via RSIP. The IP

address was determined using the my_rsip_ip tool, before starting the server:

ibethune@eslogin007:∼> my_rsip_ip

10.60.0.57

ibethune@eslogin007:∼> server 1234

Here is the message: Message

3.2 Interactive Visualisation with ParaView

ParaView [3][4], is an open-source program for data analysis and visualisation developed

by Kitware and Los Alamos National Laboratory. At time of writing, ParaView version

4.1.0 is installed on ARCHER and is available to all users as a module. ParaView is de-

signed to take advantage of distributed memory architectures to perform data processing

and rendering in parallel (using MPI), and it provides a GUI which can be coupled to the

parallel rendering server over TCP/IP, as well as a Python scripting interface for batch vi-

sualisation tasks. Several of the connectivity options between the GUI and the rendering

server were discussed in [5], and here we show how the ‘reverse-connection’ method can

RSIP on ARCHER 7

be employed on ARCHER using RSIP.

To launch the ParaView GUI on a login node do:

ibethune@eslogin003:/work/z01/z01/ibethune>

module load paraview

ibethune@eslogin003:/work/z01/z01/ibethune > paraview &

Once the GUI has started, prepare to receive a connection from the ParaView server

by choosing “Connect...” from the “File” menu. Click “Add Server”, fill out the details

as shown in Figure 2 and click “Configure”. Next, select “Manual” as the startup type

and click “Save”. Finally, select the server you have just configured and click “Connect”.

ParaView will now sit waiting for the server to connect. To start the server, use a batch

script like the following:

Figure 2: ParaView GUI connection settings

8 RSIP on ARCHER

ibethune@eslogin003:/work/z01/z01/ibethune > my_rsip_ip

10.60.0.53

ibethune@eslogin003:/work/z01/z01/ibethune > cat paraview.pbs

#!/bin/bash --login

#PBS -N pv_test

#PBS -l select=1

#PBS -l walltime=0:20:0

#PBS -A z01-cse

#PBS -q short

cd $PBS_O_WORKDIR

aprun -n 24 /work/y07/y07/paraview/Offscreen -ParaView -4.1/

bin/pvserver --mpi --use-offscreen -rendering

--reverse-connection --server-port=11111

--client-host=10.60.0.53

ibethune@eslogin003:/work/z01/z01/ibethune>

qsub paraview.pbs

The client-host option should be the RSIP address of the login node where you

launched the paraview GUI. As shown, this can be obtained by the my_rsip_ip tool.

Once the batch job starts up, the parallel rendering server will connect back to the GUI

over RSIP and subsequent visualisation tasks commanded by the GUI will execute in

parallel on ARCHER.

3.3 Path Integral Molecular Dynamics with i-PI and CP2K

i-PI [6][7] is a Python interface for running Path Integral Molecular Dynamics calcula-

tions. The program consists of a Python server which computes the Path Integral nuclear

dynamics and is interfaced to another program to provide forces and energies for each

RSIP on ARCHER 9

configuration of particles. Typically, the external program would be an electronic struc-

ture program such as CP2K, Quantum Espresso or FHI-aims, which are computationally

expensive and require execution on a parallel HPC system. The connection between the

server and client (parallel) program is via a TCP/IP socket connection initiated from the

client back to the Python server, and thus can take advantage of RSIP on ARCHER. We

illustrate how this can be done using the CP2K example calculation included with the i-PI

distribution.

Firstly, the i-PI code and examples must be obtained, and the RSIP IP address of the

current login node obtained:

ibethune@eslogin001:∼> cd /work/z01/z01/ibethune

ibethune@eslogin001:/work/z01/z01/ibethune>

git clone https://github.com/i-pi/i-pi.git

...

ibethune@eslogin001:/work/z01/z01/ibethune>

cd i-pi/examples/cp2k/npt-classical

ibethune@eslogin001:/work/z01/z01/ibethune/i-pi/

examples/cp2k/npt-classical > my_rsip_ip

10.60.0.56

We edit the i-PI input file to open a server socket on the RSIP interface, and start the

server:

ibethune@eslogin001:/work/z01/z01/ibethune/i-pi/

examples/cp2k/npt-classical >

sed -i s/localhost/10.60.0.56/ nptcls_ipi.xml

ibethune@eslogin001:/work/z01/z01/ibethune/i-pi/

examples/cp2k/npt-classical >

../../../i-pi nptcls_ipi.xml

...

Created inet socket with address 10.60.0.56 and port number 22340

@SOCKET: Starting the polling thread main loop.

10 RSIP on ARCHER

Now we must start the CP2K executable on the ARCHER compute nodes. The i-PI

server address is specified via the CP2K input file so we must edit this, as well as making

some minor changes to correctly locate some necessary files:

ibethune@eslogin001:/work/z01/z01/ibethune/i-pi/

examples/cp2k/npt-classical >

sed -i s/localhost/10.60.0.56/nptcls_cp2k.in

ibethune@eslogin001:/work/z01/z01/ibethune/i-pi/

examples/cp2k/npt-classical >

sed -i s,\.\./basis,basis, nptcls_cp2k.in

Finally we can run CP2K via the following batch script:

ibethune@eslogin001:/work/z01/z01/ibethune/i-pi/

examples/cp2k/npt-classical > cat cp2k.pbs

#!/bin/bash --login

#PBS -N cp2k_test

#PBS -l select=1

#PBS -l walltime=0:20:0

#PBS -A z01-cse

#PBS -q short

module load cp2k

cd $PBS_O_WORKDIR

aprun -n 24 $CP2K/cp2k.popt nptcls_cp2k.in

ibethune@eslogin001:/work/z01/z01/ibethune/i-pi/

examples/cp2k/npt-classical > qsub cp2k.pbs

Near the start of the CP2K output the following text appears indicating that a success-

ful connection back to the server has been made:

RSIP on ARCHER 11

@ i-PI DRIVER BEING LOADED

@ INPUT DATA: 10.60.0.56 22340 F

READS 12 STATUS

@ DRIVER MODE: Message from server: STATUS

READS 12 POSDATA

@ DRIVER MODE: Message from server: POSDATA

In addition, the server process will write to standard output as the job progresses.

Finally, when the CP2K job completes, the server will shut itself down.

4 SSH Tunnelling

While RSIP allows the compute nodes to connect to server processes on the login nodes,

it is sometimes desirable to connect to a process running somewhere outwith ARCHER

entirely. For example, with ParaView, the GUI could be run on the user’s local laptop

or PC. This avoids the interface ‘lag’ associated with a remote X-Windows application

running over SSH, and the GUI can benefit from native 3D acceleration. This is possible

using the ‘port forwarding’ feature available in most SSH clients which enables con-

nections received by a port on the ARCHER login nodes to be transparently forwarded

back to the user’s workstation through the SSH connection. A schematic of this process

is presented in Figure 3, and we present detailed instructions using the OpenSSH client,

which is typically used on Mac or Linux. Windows users with PuTTY refer to the PuTTY

documentation [8], section 4.25 “The Tunnels panel”.

1. When setting up an SSH connection, it is possible to set up a tunnel such that

connections to a specified port on the remote machine are forwarded over the SSH

connection back to specified port on the local machine. To tunnel from a port (e.g.

12345) on an ARCHER login node back to port 23456 on the local machine using

the OpenSSH client, the syntax is as follows. Note in this example we use different

port numbers to clearly illustrate which ports are used on which machine, but it is

also perfectly possible to use the same port number in both locations.

12 RSIP on ARCHER

eslogin002$

10.60.0.52$

nid02035$Local$PC$
login.archer$

.ac.uk$

1)SSHonto$ARCHER$with$
remote$port$forwarding$

2)$Listen$on$RSIP$Interface$
using$portfwd

3)$Start$Server$program$
on$local$workstaPon

4)$Start$paralleljob
and$connect$over$RSIP

Figure 3: SSH tunnelling in combination with RSIP on ARCHER

Iains-MBP:∼ ibethune$ ssh -R 12345:localhost:23456

ibethune@login.archer.ac.uk

...

Password:

...

ibethune@eslogin006:∼>

Now any connections to port 12345 on eslogin006 will be forwarded back to the

local machine (Iains-MBP).

2. The remote port that we have forwarded only listens for connections on the ‘loop-

back’ interface, i.e. only allowing connections originating from eslogin006 itself.

Thus we need to run an additional program to listen for connections on the RSIP

interface and forward these back through the tunnel. This can be done with the

portfwd program, which is available in the rsip-tools module. portfwd is

configured with a small text file which in this example listens on port 34567 (on

all interfaces, including RSIP) and forwards the connection on to port 12345 (the

remote port configured in the SSH tunnel). At this point we also record the RSIP

IP address of the current login node and start the portfwd utility. This blocks fur-

ther use of this terminal session, so we must make a new connection to ARCHER,

leaving the tunneling session open in the background.

RSIP on ARCHER 13

ibethune@eslogin006:∼> module load rsip-tools

ibethune@eslogin006:∼> my_rsip_ip

10.60.0.56

ibethune@eslogin006:∼> cat conf.txt

tcp { 34567 { => 127.0.0.1:12345 } }

ibethune@eslogin006:∼> portfwd -c conf.txt -g

3. Now we can start the server process on the local machine. We will listen for connec-

tions on local port 23456, which in effect is the remote port 34567 on eslogin006,

forwarded back down the SSH tunnel.

Iains-MBP:∼ ibethune$./server 23456

4. Finally, in a new SSH session (no tunneling configuration needed here), we can

start a job on the ARCHER compute nodes, which will connect back to our local

server through RSIP and the SSH tunnel:

ibethune@eslogin003:∼> cat test.pbs

#!/bin/bash --login

#PBS -N rsip_test

#PBS -l select=1

#PBS -l walltime=0:5:0

#PBS -A z01-cse

#PBS -q short

module load rsip-tools

cd $PBS_O_WORKDIR

aprun -n 1 client 10.60.0.56 34567 <<< "Message from ARCHER"

Once the parallel job runs, the server running on the local workstation receives the

message successfully and exits:

14 RSIP on ARCHER

Iains-MBP:∼ ibethune$./server 23456

Here is the message: Message from ARCHER

Iains-MBP:∼ ibethune$

5. When tunnelling is no longer needed, the portfwd tool can be killed with Ctrl-C,

followed by exit to log out of ARCHER as normal. The SSH tunnel is automati-

cally closed when you log out of the SSH session where the tunnel was configured.

5 The Future

Later in 2015 (dates to be confirmed), a configuration change is planned which will allow

compute nodes to resolve the addresses of login nodes over RSIP using DNS. This will

avoid the need for using the my_rsip_ip tool, instead the eslogin00x names could be

used directly. This change will also enable additional use cases which rely on DNS -

notably, applications which use license servers to determine at runtime if the application

can be run. These include both the Cray and Intel compilers, and so applications which

use on-the-fly compilation for code generation/auto-tuning will now be able to use these

as well as the GNU compilers, which work at present.

We would be interested to hear of other applications which make use of RSIP on

ARCHER. Please notify the author by email (ibethune@epcc.ed.ac.uk) with ques-

tions, suggestions for improvement, and further case study examples.

mailto:ibethune@epcc.ed.ac.uk

RSIP on ARCHER 15

A Glossary of networking terminology

• Network: A network consists of a set of nodes, or networked devices, which are

connected together via some communication medium to allow the nodes to ex-

change data. Typical communication media would be copper cabling (e.g. Ether-

net), but in general networks can exist over fibre optics, or wireless (WiFi).

• Node: A device attached to a network, typically a single computer. Nodes may be

attached to multiple different networks via separate interfaces.

• Interface: The point by which a node is attached to a network. Each interface on

a node has a unique name. An interface might be a physical Network card with

a cable socket, but it is also possible that multiple virtual interfaces can share the

same physical connection.

• VLAN: A Virtual Local Area Network, where a physical network is partitioned

such that communication is only possible between specific subsets of nodes in

the network. Each node in the (physical) network may have an interface onto the

VLAN.

• IP Address: In a TCP/IP network, each interface is identified by a unique address.

Using the IP version 4 (IPv4) notation, these are a sequence of 4 integers ranging

from 0 to 255 e.g. 193.62.216.49. Since a node may have multiple interfaces, a

node can have multiple IP addresses, each on a different network.

• Domain Name: A shorthand to refer to a node in a network, which is translated

into an IP address by the Domain Name System (DNS). Referring to nodes by do-

main name is preferred since it avoids having to remember numeric IP address, and

allows flexibility in that the IP address of a node on a network may be changed

while retaining the same domain name. Domain names can be fully qualified e.g.

login.archer.ac.uk, which allows an IP address to be determined from any-

where on the public internet, or simply a name referring to an IP address on the

local network e.g. eslogin001.

16 RSIP on ARCHER

• Socket: TCP/IP allows not only for communications to be addressed to a particular

node (by domain name or IP address), but to a particular software process running

on that node. The socket (or port) is a software abstraction of an end-point for

communication. In TCP/IP all communication takes place between a pair of sock-

ets which have made a socket connection. In order to make a socket connection,

firstly a server socket must be created, which has a unique port number. Port num-

bers may range between 0 and 65535, with the restriction that ports <1025 may

only be used by a privileged (root) user, and only a single socket can ‘bind’ to a

particular port number at one time. Once a server socket is created, it waits or lis-

tens for incoming connection requests. A client socket represents the other end of a

connection. When a program creates a client socket, it specifies a particular server

socket (IP address and port number), and if that socket exists on the network and

is accepting connections, a socket connection is made between the pair. Once a

connection exists, bi-directional communication is possible, irrespective of which

socket is the client and server.

References

[1] ARCHER User Guide. http://www.archer.ac.uk/documentation/user-guide/.

[2] Robert Ingalls. Sockets Tutorial. http://www.cs.rpi.edu/∼moorthy/Courses/os98/

Pgms/socket.html.

[3] Utkarsh Ayachit. The ParaView Guide: A Parallel Visualization Application. 2015.

ISBN 978-1930934306.

[4] Paraview. http://www.paraview.org.

[5] Iain Bethune. Parallel Visualisation on HPCx. http://www.hpcx.ac.uk/research/hpc/

technical reports/HPCxTR0803.pdf, 2008.

[6] Michele Ceriotti, Joshua More, and David E. Manolopoulos. i-PI: A Python in-

terface for ab initio path integral molecular dynamics simulations. Computer

http://www.archer.ac.uk/documentation/user-guide/
http://www.cs.rpi.edu/~moorthy/Courses/os98/Pgms/socket.html
http://www.cs.rpi.edu/~moorthy/Courses/os98/Pgms/socket.html
http://www.paraview.org
http://www.hpcx.ac.uk/research/hpc/technical_reports/HPCxTR0803.pdf
http://www.hpcx.ac.uk/research/hpc/technical_reports/HPCxTR0803.pdf

RSIP on ARCHER 17

Physics Communications, 185(3):1019 – 1026, 2014. ISSN 0010-4655. URL

http://dx.doi.org/10.1016/j.cpc.2013.10.027.

[7] A Python wrapper for (ab initio) (path integrals) molecular dynamics. https://github.

com/i-pi/i-pi.

[8] PuTTY User Manual. http://the.earth.li/∼sgtatham/putty/latest/htmldoc/.

http://dx.doi.org/10.1016/j.cpc.2013.10.027
https://github.com/i-pi/i-pi
https://github.com/i-pi/i-pi
http://the.earth.li/~sgtatham/putty/latest/htmldoc/

