
Virtual Topologies

Virtual Topologies

Convenient process naming.

Naming scheme to fit the communication

pattern.

Simplifies writing of code.

Can allow MPI to optimise communications.

How to use a Virtual Topology

Creating a topology produces a new

communicator.

MPI provides ``mapping functions''.

Mapping functions compute processor ranks,

based on the topology naming scheme.

Example

 A 2-dimensional Cylinder

 0

(0,0)

 1

(0,1)

 2

(0,2)

 3

(0,3)

 4

(1,0)

 5

(1,1)

 6

(1,2)

 7

(1,3)

 8

(2,0)

 9

(2,1)

 10

(2,2)

 11

(2,3)

Topology types

Cartesian topologies
– each process is “connected” to its neighbours in a virtual grid.

• boundaries can be cyclic, or not.

• optionally re-order ranks to allow MPI implementation to optimise

for underlying network interconnectivity.

– processes are identified by cartesian coordinates.

Graph topologies
– general graphs

– not covered here

Creating a Cartesian Virtual Topology

 C:

 int MPI_Cart_create(MPI_Comm comm_old,

 int ndims, int *dims, int *periods,

 int reorder, MPI_Comm *comm_cart)

 Fortran:

 MPI_CART_CREATE(COMM_OLD, NDIMS, DIMS,

 PERIODS, REORDER, COMM_CART, IERROR)

 INTEGER COMM_OLD, NDIMS, DIMS(*), COMM_CART, IERROR

 LOGICAL PERIODS(*), REORDER

Balanced Processor Distribution

 C:

 int MPI_Dims_create(int nnodes, int ndims,

 int *dims)

 Fortran:

 MPI_DIMS_CREATE(NNODES, NDIMS, DIMS, IERROR)

 INTEGER NNODES, NDIMS, DIMS(*), IERROR

MPI_Dims_create

Call tries to set dimensions as close to each other as

possible

Non zero values in dims sets the number of processors

required in that direction.
– WARNING:- make sure dims is set to 0 before the call!

dims before the call function call dims on return

(0, 0) MPI_DIMS_CREATE(6, 2, dims) (3, 2)

(0, 0) MPI_DIMS_CREATE(7, 2, dims) (7, 1)

(0, 3, 0) MPI_DIMS_CREATE(6, 3, dims) (2, 3, 1)

(0, 3, 0) MPI_DIMS_CREATE(7, 3, dims) erroneous call

Cartesian Mapping Functions

 Mapping process grid coordinates to ranks

C:

 int MPI_Cart_rank(MPI_Comm comm,

 int *coords, int *rank)

Fortran:

 MPI_CART_RANK (COMM, COORDS, RANK, IERROR)

 INTEGER COMM, COORDS(*), RANK, IERROR

Cartesian Mapping Functions

Mapping ranks to process grid coordinates

 C:

 int MPI_Cart_coords(MPI_Comm comm, int rank,

 int maxdims, int *coords)

 Fortran:

 MPI_CART_COORDS(COMM, RANK, MAXDIMS,COORDS,

 IERROR)

 INTEGER COMM, RANK, MAXDIMS, COORDS(*), IERROR

Cartesian Mapping Functions

Computing ranks of my neighbouring processes

Following conventions of MPI_SendRecv

 C:

 int MPI_Cart_shift(MPI_Comm comm,

 int direction, int disp,

 int *rank_source, int *rank_dest)

 Fortran:

 MPI_CART_SHIFT(COMM, DIRECTION, DISP,

 RANK_SOURCE, RANK_DEST, IERROR)

 INTEGER COMM, DIRECTION, DISP,

 RANK_SOURCE, RANK_DEST, IERROR

Non-existent ranks

What if you ask for the rank of a non-existent

process?
– or look off the edge of a non-periodic grid?

MPI returns a NULL processor
– rank is MPI_PROC_NULL

MPI_PROC_NULL is a black hole
– sends and receives complete immediately

– send buffer disappears, receive buffer isn’t touched

– like UNIX /dev/null

Cartesian Partitioning

Cut a grid up into “slices”.

A new communicator is produced for each slice.

Each slice can then perform its own collective

communications.

MPI_Cart_sub and MPI_CART_SUB generate

new communicators for the slices.
– Use array to specify which dimensions should be retained in the

new communicator.

Partitioning with MPI_CART_SUB

C:

 int MPI_Cart_sub (MPI_Comm comm,

 int *remain_dims,

 MPI_Comm *newcomm)

Fortran:

 MPI_CART_SUB (COMM, REMAIN_DIMS,

 NEWCOMM,IERROR)

 INTEGER COMM, NEWCOMM, IERROR

 LOGICAL REMAIN_DIMS(*)

Exercise

See Exercise 6 on the sheet

Rewrite the exercise passing numbers round

the ring using a one-dimensional ring topology.

