
INTRODUCTION TO THE ARCHER

KNIGHTS LANDING CLUSTER

Adrian Jackson

adrianj@epcc.ed.ac.uk

@adrianjhpc

Processors
• The power used by a CPU core is proportional to Clock

Frequency x Voltage2

• In the past, computers got faster by increasing the frequency
• Voltage was decreased to keep power reasonable.

• Now, voltage cannot be decreased any further
• 1s and 0s in a system are represented by different voltages

• Reducing overall voltage further would reduce this difference to a point
where 0s and 1s cannot be properly distinguished

• Other performance issues too…
• Capacitance increases with complexity
• Speed of light, size of atoms, dissipation of heat

• And practical issues
• Developing new chips is incredibly expensive

• Must make maximum use of existing technology
• Now parallelism explicit in chip design

• Beyond implicit parallelism of pipelines, multi-issue and
vector units

Multicore processors

Accelerators

• Need a chip which can perform many parallel operations

every clock cycle

• Many cores and/or many operations per core

• Floating Point operations (FLOPS) what is generally crucial for
computational simulation

• Want to keep power/core as low as possible

• Much of the power expended by CPU cores is on

functionality not generally that useful for HPC

• Branch prediction, out-of-order execution etc

Accelerators

• So, for HPC, we want chips with simple, low power,

number-crunching cores

• But we need our machine to do other things as well as the

number crunching

• Run an operating system, perform I/O, set up calculation etc

• Solution: “Hybrid” system containing both CPU and

“accelerator” chips

AMD 12-core CPU

• Not much space on CPU is dedicated to compute

= compute unit

(= core)

NVIDIA Fermi GPU

= compute unit

(= SM

= 32 CUDA cores)

Intel Xeon Phi (KNC)
• As does Xeon Phi

= compute

unit

(= core)

Intel Xeon Phi - KNC

• Intel Larrabee: “A Many-Core x86 Architecture for Visual Computing”

• Release delayed such that the chip missed competitive window of
opportunity.

• Larrabee was not released as a competitive product, but instead a
platform for research and development (Knight’s Ferry).

• 1st Gen Xeon Phi Knights Corner derivative chip

• Intel Xeon Phi – co-processor

• Many Integrated Cores (MIC) architecture. No longer aimed at
graphics market

• Instead “Accelerating Science and Discovery”

• PCIe Card

• 60 cores/240 threads/1.054 GHz

• 8 GB/320 GB/s

• 512-bit SIMD instructions

• Hybrid between GPU and many-core CPU

KNC

• Each core has a private L2 cache

• “ring” interconnect connects components together

• cache coherent

KNC

• Intel Pentium P54C cores were originally used in CPUs in

1993

• Simplistic and low-power compared to today’s high-end CPUs

• Philosophy behind Phi is to dedicate large fraction of

silicone to many of these cores

• And, similar to GPUs, Phi uses Graphics GDDR Memory

• Higher memory bandwidth that standard DDR memory used by
CPUs

KNC

• Each core has been augmented with a wide 512-bit vector

unit

• For each clock cycle, each core can operate vectors of

size 8 (in double precision)

• Twice the width of 256-bit “AVX” instructions supported by current
CPUs

• Multiple cores, each performing multiple operations per

cycle

KNC

3100 series 5100 series 7100 series

cores 57 60 61

Clock frequency 1.100 GHz 1.053 GHz 1.238 GHz

DP Performance 1 Tflops 1.01 TFlops 1.2 TFlops

Memory Bandwidth 240 GB/s 320 GB/s 352 GB/s

Memory 6 GB 8 GB 16 GB

KNC Systems

• Unlike GPUs, Each KNC runs an operating system

• User can log directly into KNC and run code

• “native mode”

• But any serial parts of the application will be very slow relative to
running on modern CPU

• Typically, each node in a system will contain at least one

regular CPU in addition to one (or more) KNC

• KNC acts as an “accelerator”, in exactly the same way as

already described for GPU systems.

• “Offload mode”: run most source code on main CPU, and

offload computationally intensive parts to KNC

KNC: Achievable Performance

• 1 to 1.2 TFlop/s double precision performance
• Dependent on using 512-bit vector units

• And FMA instructions

• 240 to 352 GB/s peak memory bandwidth

• ~60 physical cores
• Each can run 4 threads

• Must run at least 2 threads to get full instruction issue rate

• Don’t think of it as 240 threads, think of it as 120 plus more if
beneficial

• 2.5x speedup over host is good performance
• Highly vectorised code, no communications costs

• MPI performance
• Can be significantly slower than host

Xeon Phi – Knights Landing (KNL)

• Intel’s latest many-core processor

• Knights Landing

• 2nd generation Xeon Phi

• Successor to the Knights Corner

• 1st generation Xeon Phi

• New operation modes

• New processor architecture

• New memory systems

• New cores

KNL

Picture from Avinash Sodani’s talk from hot chips 2016

KNL

KNL vs KNC

L2 cache sharing

• L2 cache is shared between cores on a tile

• Capacity depends on data locality

• No sharing of data between core: 512kb per core

• Sharing data: 1MB for 2 cores

• Gives fast communication mechanism for

processes/threads on same tile

• May lend itself to blocking or nested parallelism

Hyperthreading

• KNC required at least 2 threads per core for sensible

compute performance

• Back to back instruction issues were not possible

• KNL does not

• Can run up to 4 threads per core efficiently

• Running 3 threads per core is not sensible

• Resource partitioning reduces available resources for all threads

• A lot of applications don’t need any hyperthreads

• Much more like ARCHER Ivybridge hyperthreading now

KNL

hemisphere

Memory

• Two levels of memory for KNL

• Main memory

• KNL has direct access to all of main memory

• Similar latency/bandwidth as you’d see from a standard processors

• 6 DDR channels

• MCDRAM

• High bandwidth memory on chip: 16 GB

• Slightly higher latency than main memory (~10% slower)

• 8 MCDRAM controllers/16 channels

Memory Modes

• Cache mode

• MCDRAM cache for DRAM

• Only DRAM address space

• Done in hardware (applications don’t need modified)

• Misses more expensive (DRAM and MCDRAM access)

• Flat mode

• MCDRAM and DRAM are both available

• MCDRAM is just memory, in same address space

• Software managed (applications need to do it themselves)

• Hybrid – Part cache/part memory

• 25% or 50% cache

MCDRAM DRAMProcessor

MCDRAM

DRAM

Processor

Compiling for the KNL

• Standard KNL compilation targets the KNL vector

instruction set

• This won’t run on standard processor

• Binaries that run on standard processors will run on the KNL

• If your build process executes programs this may be an

issue

• Can build a fat binary using Intel compilers

-ax MIC-AVX-512,AVX

• For other compilers can do initial compile with KNL instruction set

• Then re-compile specific executables with KNL instruction set

• i.e. –aAVX for Intel, -hcpu=… for Cray, -march=… for GNU

ARCHER KNL

• 12 nodes in test system

• ARCHER users get access

• Non-ARCHER users can get access through driving test

• Initial access will be unrestricted

• Charging will come in soon (near end of November)

• Charging will be same as ARCHER (i.e. 1 node hour = 0.36 kAUs)

• Each node has

• 1 x Intel(R) Xeon Phi(TM) CPU 7210 @ 1.30GHz

• 64 core/4 hyperthreads

• 16GB MCDRAM

• 96GB DDR4@2133 MT/s

System setup
• XC40 system integrated with ARCHER

• Shares /home file system

• KNL system has it’s own login nodes: knl-login

• Not accessible from the outside world

• Have to login in to the ARCHER login nodes first

• ssh to login.archer.ac.uk then ssh to knl-login

• Username is same as ARCHER account username

• Compile jobs there

• Different versions of the system software from the standard
ARCHER nodes

• Submit jobs using PBS from those nodes

• Has it’s own /work filesystem (scratch space)
/work/knl-users/$user

Programming the KNL
• Standard HPC - parallelism

• MPI

• OpenMP
• Default OMP_NUM_THREADS may be 256

• mkl

• Standard HPC – compilers
• module craype-mic-knl (loaded by default on knl-login nodes)

• Intel compilers
–xMIC-AVX512 (without the module)

• Cray compilers
-hcpu=mic-knl (without the module)

• GNU compilers
-march=knl or -mavx512f -mavx512cd -mavx512er -mavx512pf

(without the module)

Running applications on the XC40

• You will have a separate budget on the KNL system
• Name is: k01-$USER i.e. k01-adrianj

• Use PBS and aprun as in ARCHER

• Standard PBS script, with one extra for selecting
memory/communication setup (more later)

• Standard aprun, run 64 MPI processes on the 64 KNL cores:

aprun –n 64 ./my_app

• 256 threads per KNL processor

• Numbering wraps, i.e. 0-63 the hardware cores, 64-127 wraps onto
the cores again, etc…

• Meaning core 0 has threads 0,64,128,192, core 1 has threads
1,65,129,193, etc…

Running applications on the XC40

• For hyperthreading (using more than 64 cores):
OMP_NUM_THREADS=4

aprun –n 256 –j 4 ./my_app

or

aprun –n 128 –j 2 ./my_other_app

• Should also be possible to control thread
placement with OMP_PROC_BIND:

OMP_PROC_BIND=true

OMP_NUM_THREADS=4

aprun –n 64 –cc none –j 4 ./my_app

• Different memory modes and cluster options
• Configured at boot time

• Switching between cache and flat mode

• Switching cluster modes

• For ARCHER XC40 Cluster configuration is done through batch
system (PBS)

• Modes can be requested as a resource:
#PBS –l select=4:aoe=quad_100

#PBS –l select=4:aoe=snc2_50

• This is in the form :aoe=numa_cfg_hbm_cache_pct

• Available modes are:
• For the NUMA configuration (numa_cfg): a2a, snc2, snc4, hemi, quad
• For the MCDRAM cache configuration (hbm_cache_pct): 0, 25, 50, 100

• So for quadrant mode and flat memory (MCDRAM and DRAM
separate) this would be:
#PBS –l select=4:aoe=quad_0

• Currently not enabling changing KNL setup

Configuring KNL

Current configuration

adrianj@login:~> apstat -M

NID Memory(MB) HBM(MB) Cache(MB) NumaCfg

44 98304 16384 16384 quad

45 98304 16384 16384 quad

46 98304 16384 16384 quad

47 98304 16384 16384 quad

48 98304 16384 16384 quad

49 98304 16384 16384 quad

50 98304 16384 16384 quad

51 98304 16384 16384 quad

52 98304 16384 16384 quad

53 98304 16384 16384 quad

54 114688 16384 0 quad

55 114688 16384 0 quad

adrianj@login:~>

Test data hardware

• Same KNL as the ARCHER ones

• Intel(R) Xeon Phi(TM) CPU 7210 @ 1.30GHz

• 64 core

• 16GB MCDRAM

• 215W TDP

• 1.3Ghz TDP, 1.1Ghz AVX

• 1.6Ghz Mesh

• 6.4GT/s OPIO

• 96GB DDR4@2133 MT/s

Performance

• Initial performance experiences with a single KNL

CP2K

Results courtesy of Fiona Reid

CP2K

Results courtesy of Fiona Reid

LU factorisation (KNC)

0

0.5

1

1.5

2

2.5

3

R
e

la
ti

v
e

 P
e

rf
o

rm
a

n
ce

 R
a

ti
o

Relative performance ARCHER node to one Xeon Phi

Relative performance (>1 Xeon Phi better, <1 ARCHER

better)

LU Factorisation

0

1

2

3

4

5

6

7

8

9

P
e

rf
o

rm
a

n
ce

 R
a

ti
o

Relative performance ARCHER node to one Knights Landing Xeon Phi

(>1 Xeon Phi better, <1 ARCHER better)

SIMD Ivdep Cilk MKL

LU factorisation

0

0.2

0.4

0.6

0.8

1

1.2

P
e

rf
o

rm
a

n
ce

 R
a

ti
o

Comparison between 64 and 64 with HBM

1 > HBM threads better

Ivdep SIMD Cilk MKL

Performance multi-node

• COSA - Fluid dynamics code

• Harmonic balance (frequency domain approach)

• Unsteady navier-stokes solver

• Optimise performance of turbo-machinery like problems

• Multi-grid, multi-level, multi-block code

• GS2

ARCHER Broadwell KNL KNL HB KNL 2 Node HB

497 349 561 450 197

ARCHER Broadwell KNL KNL HB KNL 2 Node KNL 2 Node HB

126 84 185 103 103 70

MPI Performance - PingPong

MPI Performance - Allreduce

MPI Performance - Allreduce

Questions?

mwuJ1RxYW8T8

