
MPI Casestudy: Parallel Image Processing

David Henty

1 Introduction

The aim of this exercise is to write a complete MPI parallel program that does a very basic form of
image processing. We will start by writing a serial code that performs the required calculation but is also
designed to make subsequent parallelisation as straightforward as possible. The image itself is a large
two-dimensional grid, so the natural parallel approach is to use regular domain decomposition. As the
image processing method we will use involves nearest-neighbour interactions between grid points, this
will require boundary swaps between neighbouring processes. The exercise also utilises parallel scatter
and gather operations. For simplicity, we will use a one-dimensional process grid (i.e. decompose the
problem into slices).

The solution can easily be coded using either C or Fortran. The only subtlety is that the natural direction
for the parallel decomposition, whether to slice up the 2D grid over the first or second dimension, is
different for the two languages. Some sample images and IO routines in C and Fortran can be found in
the fileMPP-casestudy.tar on the MPP course web pages.

2 The Method

You will be given a file that represents the output from a very simple edge-detection algorithm applied to
a greyscale image of sizeM ×N . The edge pixel values are constructed from the image using

edgei,j = imagei−1,j + imagei+1,j + imagei,j−1 + imagei,j+1 − 4 imagei,j

If an image pixel has the same value as its four surrounding neighbours (i.e. no edge) then the value of
edgei,j will be zero. If the pixel is very different from its four neighbours (i.e. a possible edge) then
edgei,j will be large in magnitude. We will always consideri andj to lie in the range1, 2, . . . M and
1, 2, . . . N respectively. Pixels that lie outside this range (e.g.imagei,0 or imageM+1,j) are considered
to be white, i.e. to have the value 255.

Many more sophisticated methods for edge detection exist, but this is a nice simple approach. See
Figure 1 for an example of how this works in practice.

The exercise is actually to do the reverse operation and construct the initial image given the edges. This
is a slightly artificial thing to do, and is only possible given the very simple approach used to detect the
edges in the first place. However, it turns out that the reverse calculation is iterative, requiring many
successive operations each very similar to the edge detection calculation itself. The fact that calculating
the image from the edges requires a large amount of computation, including many boundary swaps in
the parallel code, makes it a much more suitable program than edge detection itself for the purposes of
timing and parallel scaling studies.

As an aside, this inverse operation is also very similar to a large number of real scientific HPC calculations
that solve partial differential equations using iterative algorithms such as Jacobi or Gauss-Seidel.

1

Figure 1: Result of simple edge detection

3 Serial Code

You are provided with two routinespgmreadandpgmwritein C (seepgmio.c) or Fortran (seepgmio.f90).
The first routine reads the input file, and the second writes out an array as a Portable Grey Map (PGM)
file that can be viewed using the programdisplay. There is also a helper functionpgmsizeto compute
the size of an image file, which is useful if you are using dynamic array allocation. Instructions detailing
how to call these routines from your own program are included as comments at the top of each file -you
should not waste time looking at the code that actually implements the routines!.

The file formats are very simple, e.g. the edge PGM file is a text file which contains the image dimensions
M andN and theM×N integer values ofedgei,j . Writing an array as a greyscale image usingpgmwrite
requires a small amount of processing as the greyscale values must be positive, whereas a general data
array (such asedgei,j) can have both positive and negative entries.

Although the input and output files both contain only integer values, note thatpgmreadreads the edge
data into an array of single precision floating-point numbers (i.e. float / real) andpgmwritewrites out
from an array of floating-point numbers. This is because the reverse calculation that we are performing
cannot easily be done in integer arithmetic.

3.1 Viewing the edges

Write a program that simply declares a floating-point array (i.e.float in C or REALin Fortran) of just
the right size for the smaller imageedge192x128.pgm. Use the two supplied routines to read in the edge
data file and then immediately write it out again as a PGM file. View the image usingdisplay. Is it
obvious what the full image should look like when you can only see the edges?

3.2 Reconstructing the image

It turns out that the full image can be reconstructed from the edges byrepeatedoperations of the form

newi,j =
1
4
(oldi−1,j + oldi+1,j + oldi,j−1 + oldi,j+1 − edgei,j)

whereold andnew are the image values at the beginning and end of each iteration. We will take the
initial value for the image array (the value ofold at the start of the first iteration) to be pure white.

2

The simplest way to set pixels off the edge of the array to 255 is to declare all arrays in your program
with explicit halos, i.e.float old[M+2][N+2] in C or REAL old(0:M+1,0:N+1) in Fortran
(similarly for new andedge), and set the halo values to 255. For IO you will need one more array called
buf which has no halos.

The entire loop then becomes:

1. read the edges data file into thebuf array

2. loop overi = 1,M ; j = 1, N

• edgei,j = bufi−1,j−1 (in C)

• edgei,j = bufi,j (in Fortran)

3. end loop

4. set the entireold array to 255includingthe halos

5. begin loop over iterations

• loop overi = 1,M ; j = 1, N

– setnewi,j = 1
4 (oldi−1,j + oldi+1,j + oldi,j−1 + oldi,j+1 − edgei,j)

• end loop

• set theold array equal tonew, making sure that youdo notcopy the halos

6. end loop over iterations

7. copy theold array back tobuf excluding the halos

8. write out the final image by passingbuf to pgmwrite

The initialisation ofold to 255 achieves two things. Most importantly it sets the very outer edges of the
image to 255. However, it also sets up our initial guess for the solution to be a completely white image.

3.3 Testing the serial code

Run your code for 0, 1, 10, 100 and 1000 iterations and view the reconstructed image each time. Do you
see what you expect? How many iterations do you think it will take to recover an “exact” image?

4 Initial parallelisation

For the initial parallelisation we will simply use trivial parallelism, i.e. each process will work on different
sections of the image but with no communication between them. Although this will not reconstruct the
image exactly, since we are not performing the required halo swaps, it serves as a good intermediate step
to a full parallel code. Most importantly it will have exactly the same data decomposition and parallel IO
approaches as a fully working parallel code.

Before progressing any further, please ensure you have a backup copy of your working serial code.

The entire parallelisation process is made much simpler if we ensure that the slices of the image operated
on by each process are contiguous pieces of the whole image (in terms of the layout in memory). This
means dividing up the image between processes over the first dimensioni for a C arrayedge[i][j] ,
and the second dimensionj for a Fortran arrayedge(i,j) . Figure 2 illustrates how this would work
on 4 processes where the slices are numbered according to the rank of the process that owns them.

3

Figure 2: Decomposition strategies for 4 processes

Again, for simplicity, we will always assume thatM and N are exactly divisible by the number of
processesP . It is easiest to program the exercise if you makeP a compile time constant (a#define in
C or aparameter in Fortran).

The simplest approach to doing the IO is to read the entire file into an array on one master process (usually
rank = 0) and then to distribute it amongst the other processes. Note that this is not particularly efficient
in terms of memory usage as we need enough space to store the whole image on a single process.

I will call the dimensions of the image slicesMP andNP where

• for C: MP = M/P andNP = N

• for Fortran:MP = M andNP = N/P

4.1 The parallel program

The steps to creating the first parallel program are as follows.

1. re-dimension all the arrays withM andN replaced byMP andNP

2. create a new array calledmasterbuf of sizeM ×N

3. initialise MPI, compute thesize andrank, and check thatsize = P

4. on the master process only, read the edges data file intomasterbuf

5. split the data up amongst processes usingMPI_Scatter with sendbuf = masterbuf and
recvbuf = buf

6. now follow steps 2 through 7 of the original serial code, exactly as before, except withM andN
replaced by the local sizesMP andNP

7. transfer the data from all thebuf arrays back tomasterbuf on the master using a call toMPI_Gather

8. on the master process only, write out the final image by passingmasterbuf to pgmwrite

4.2 Testing the parallel program

Run your code for 0, 1, 10, 100 and 1000 iterations and look at the output images. How do they compare
to the (correct) serial code? Is the total execution time decreasing as you expect? In terms of Amdahl’s
law, what are the inherently serial and potentially parallel parts of your (incomplete) MPI program?

4

5 Full parallel code

The only addition now required to get a full parallel code is to add halo swaps to theold array (which
is the only array for which there are non-local array references of the formoldi−1,j , oldi,j+1 etc). This
should be done once every iteration, immediately after the start of the iteration loop and before any other
computation has taken place.

To do this, each process must know therank of its neighbouring processes. Referring to the Fortran
decomposition as shown in Figure 2, these are given byrank − 1 andrank + 1. However, since we
have fixed boundary conditions on the edges,rank 0 does not send any data to (or receive from) the left
andrank 3 need not send any data to (or receive from) the right. This is best achieved by defining a
1D Cartesian topology with non-periodic boundary conditions - you should already have code to do this
from the previous “message round a ring” exercise. You also need to ensure that the processes do not
deadlock by all trying to do synchronous sends at the same time. Again, you should re-use the code from
the same exercise.

The communications involves sending and receiving entire rows or columns of data (depending on
whether you are using C or Fortran). The process is as follows - it may be helpful to look at the ap-
propriate decomposition in Figure 2.

For C:

• send theN array elements (old[MP][j]; j = 1,N) to rank + 1

• receiveN array elements fromrank − 1 into (old[0][j]; j = 1,N)

• send theN array elements (old[1][j]; j = 1,N) to rank − 1

• receiveN array elements fromrank + 1 into (old[MP +1][j]; j = 1,N)

For Fortran:

• send theM array elements (old[i][NP]; i = 1,M) to rank + 1

• receiveM array elements fromrank − 1 into (old[i][0]; i = 1,M)

• send theM array elements (old[i][1]; i = 1,M) to rank − 1

• receiveM array elements fromrank + 1 into (old[i][NP + 1]; i = 1,M)

Each of the two send-receive pairs is basically the same as a step of the ring exercise except that data
is being sent in different directions (first clockwise then anti-clockwise). Remember that you can send
and receive entire halos as single messages due to the way we have chosen to split the data amongst
processes.

5.1 Testing the complete code

Again, run your program for 0, 1, 10, 100 and 1000 iterations and compare the output images to the
serial code. Are they exactly the same? How do the execution times compare to the serial code and the
previous (incomplete) parallel code? How does the time scale withP?

Plot parallel scaling curves for a range of problem sizes. You may want to insert explicit timing calls into
the code so you can exclude the IO overheads.

6 Further Work

Congratulations for getting this far! Here are a number of suggestions for extensions to your current
parallel code, in no particular order.

5

6.1 Stopping criterion

It is possible to quantify how many iterations of the main loop are required rather than simply stopping
after some fixed number. The easiest thing to do is to monitor how much the image changes at each
iteration; we will stop when none of the pixels change by more than a certain amount.

To do this, compute the maxium absolute change of any pixel in the image, i.e. compute∆ given by:

∆ = max
i,j

|newi,j − oldi,j |

where|x| means the absolute value ofx which is always positive. In a parallel code you will need to
compute∆ locally on each process, then do a global reduction across processes.

Rewrite your code so that it terminates when∆ is less than some amount, say0.1. Given the overhead of
calculating∆, particularly considering the need for a global sum, is it worth checking it every iteration?
By timing your code with and without computing∆, estimate the optimal frequency at which you should
check for completion.

6.2 Overlapping communication and calculation

One of the tutorial problems concerns overlapping communication and calculation, i.e. doing calculation
that does not require the communicated halo data at the same time as the halo is being sent using non-
blocking routines. Calculations involving the halos are done separately after the halos have arrived.

See if you can implement this in practice in your code. Does it improve performance?

6.3 Derived Data Types for IO

The parallel IO currently proceeds in three phases, e.g. on input

1. read the data intomasterbuf

2. scatter the data frommasterbuf to buf

3. copybuf into edge

and in the reverse order for output. By defining a derived datatype that maps onto the internal region of
edge, excluding the halos, see if you can transfer data directly betweenmasterbuf andedge.

6.4 Reducing IO memory

By altering the IO routines so that they can read in the data in smaller chunks, see if you can create a
working parallel code without the need for the largemasterbuf array (you may need to change the order
in which the data is stored in the input file). How does the performance of the new parallel input and/or
output routines compare to the original, especially on large numbers of processes?

6.5 Alternative decomposition

The way that the slices were mapped onto processes was chosen to simplify the parallelisation. How
would the IO and halo-swap routines need to be changed if you wanted to parallelise your code by
decomposing over the other dimension (overj for C andi for Fortran). You should be able to make
only minor changes to your existing code if you define appropriate derived datatypes for the halo data,
although the IO will be more complicated. What is the effect on performance?

6

