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Communicators

• All MPI communications take place within a communicator

• a group of processes with necessary information for message passing

• there is one pre-defined communicator: MPI_COMM_WORLD

• contains all the available processes

• Messages move within a communicator 

• E.g., point-to-point send/receive must use same communicator

• Collective communications occur in single communicator 

• unlike tags, it is not possible to use a wildcard
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Use of communicators

• Question: Can I just use MPI_COMM_WORLD for everything?

• Answer: Yes

• many people use MPI_COMM_WORLD everywhere in their MPI programs

• Better programming practice suggests

• abstract the communicator using the MPI handle

• such usage offers very powerful benefits

MPI_Comm comm;        /* or INTEGER for Fortran */

comm = MPI_COMM_WORLD;

...

MPI_Comm_rank(comm, &rank);

MPI_Comm_size(comm, &size);

....



Split Communicators

• It is possible to sub-divide communicators

• E.g.,split MPI_COMM_WORLD

• Two sub-communicators can have the same or differing sizes

• Each process has a new rank within each sub communicator

• Messages in different communicators guaranteed not to interact
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MPI interface
• MPI_Comm_split()

• splits an existing communicator into disjoint (i.e. non-overlapping) 
subgroups

• Syntax, C:
int MPI_Comm_split(MPI_Comm comm, int colour, int

key, MPI_Comm *newcomm)

• Fortran:
MPI_COMM_SPLIT(COMM, COLOUR, KEY, NEWCOMM, IERROR)

INTEGER COMM, COLOUR, KEY, NEWCOMM, IERROR

• colour – controls assignment to new communicator

• key – controls rank assignment within new communicator



What happens…
• MPI_Comm_split() is collective

• must be executed by all processes in group associated with comm

• New communicator is created
• for each unique value of colour

• All processes having the same colour will be in the same sub-

communicator

• New ranks 0…size-1

• determined by the (ascending) value of the key

• If keys are same, then MPI determines the new rank

• Processes with the same colour are ordered according to their key

• Allows for arbitrary splitting
• other routines for particular cases, e.g. MPI_Cart_sub



Split Communicators – C example

MPI_Comm comm, newcomm;

int colour, rank, size;

comm = MPI_COMM_WORLD;

MPI_Comm_rank(comm, &rank);

/* Set colour depending on rank: Even numbered ranks 

have colour = 0, odd have colour = 1 */

colour = rank%2; 

MPI_Comm_split(comm, colour, rank, &newcomm);

MPI_Comm_size (newcomm, &size);

MPI_Comm_rank (newcomm, &rank);



Split Communicators – Fortran example

integer :: comm, newcomm

integer :: colour, rank, size, errcode

comm = MPI_COMM_WORLD

call MPI_COMM_RANK(comm, rank, errcode)

! Again, set colour according to rank

colour = mod(rank,2)

call MPI_COMM_SPLIT(comm, colour, rank, newcomm,&         

errcode)

MPI_COMM_SIZE(newcomm, size, errcode)

MPI_COMM_RANK(newcomm, rank, errcode)



Diagrammatically
• Rank and size of the new communicator
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Duplicating Communicators
• MPI_Comm_dup()

• creates a new communicator of the same size

• but a different context

• Syntax, C:
int MPI_Comm_dup(MPI_Comm comm, 

MPI_Comm *newcomm)

• Fortran:
MPI_COMM_DUP(COMM, NEWCOMM, IERROR)

INTEGER COMM, NEWCOMM, IERROR 



Using Duplicate Communicators
• An important use is for libraries

• Library code should not use same communicator(s) as user 
code

• Possible to mix up user and library messages

• Almost certain to be fatal

• Instead, can duplicate the user’s communicator

• Encapsulated in library (hidden from user)

• Use new communicator for library messages

• Messages guaranteed not to interfere with user messages

• Could try to do this by reserving tags in MPI (tricky) but 
wildcarding of tags can still create problems



Freeing Communicators
• MPI_Comm_free()

• a collective operation which destroys an unwanted communicator

• Syntax, C:

int MPI_Comm_free(MPI_Comm * comm)

• Fortran:

MPI_COMM_FREE(COMM, IERROR)

INTEGER COMM, IERROR

• Any pending communications which use the communicator will complete 
normally

• Deallocation occurs only if there are no more active references to the 
communication object



Advantages of Communicators

• Many requirements can be met by using communicators

• Can’t I just do this all with tags?

• Possibly, but difficult, painful and error-prone

• Easier to use collective communications than point-to-
point
• Where subsets of MPI_COMM_WORLD are required

• E.g., averages over coordinate directions in Cartesian grids

• In dynamic problems

• Allows controlled assignment of different groups of processors to 
different tasks at run time



Applications, for example

• Linear algebra

• row or column operations or act on specific regions of a matrix 
(diagonal, upper triangular etc)

• Hierarchical problems

• Multi-grid problems e.g. overlapping grids or grids within grids

• Adaptive mesh refinement

• E.g. complexity may not be known until code runs, can use split comms to 
assign more processors to a part of the problem

• Taking advantage of locality

• Especially for communication (e.g. group processors by node)

• Multiple instances of same parallel problem

• Task farms



Fast and slow communication
• Many systems now hierarchical / heterogeneous

• Chips with shared memory cores

• “Nodes” of many chips with shared memory

• Groups of nodes connected by an interconnect

• Assume a “node” shares memory and communication hardware

SWITCH



Message passing
• MPI may have two modes of operation

• One optimised for use within a node (intra-node) via shared memory

• One for communicating between nodes (inter-node) via network

• Performance may be quite different
• E.g. for HPCx (previous national supercomputer: IBM)

• MPI latency within node (shared memory) ~3µs
• MPI latency between nodes (network) ~6µs

• HECToR (previous national supercomputer: Cray)
• on-node MPI latency XE6 and XT4 ~0.5µs
• off-node MPI latency 1.4µs (XE6) and 6.0µs (XT4)

• ARCHER
• on-chip MPI latency ~0.25µs
• on-node, cross-chip MPI latency ~0.5µs
• off-node MPI latency ~1.5µs

• Do we benefit from this automatically?
• May depend on the implementation of MPI

• If MPI doesn’t help, can try for ourselves using communicators



Using intra-node and inter-node 
messages
• Can we take advantage of the difference

• E.g., to improve the performance of “Allreduce”

• So, want to reduce expensive operations

• number of inter-node messages (latency)

• the amount of data sent between nodes (bandwidth)

• Trade off against

• Additional (cheap) intra-node communication



A Solution
• Split global communicator at node boundaries

• How to do this?

• Need a way to identify hardware from software

• i.e. need to know which physical processors reside on which physical nodes

• For example,
• Use MPI_Get_processor_name()

• to give a unique string for different nodes

• e.g., on HPCx:  l4f403, l1f405, etc

• Assume we have a function
• int name_to_colour(const char *string)

• Returns a unique integer for any given string



A Solution continued

• Pseudo code for the function might look like
hash = 0

For each byte c in name

hash -> 131*hash + c

• Creates a unique hash value for each node name

• 131 is used to avoid collisions

• On many systems node names only differ by numerical digits. 

• E.g. node names l4f403, l1f405 equate to 1169064111 and 

2052563872 respectively



Intra-node communicator

• Use this number to split the input communicator

MPI_Get_processor_name(procname,&len);

node_key = name_to_colour(procname);

MPI_Comm_split(input,node_key,0,&local);

• local is now a communicator for the local node

• Now we can make communicators across nodes

MPI_Comm_rank(local,&lrank);

MPI_Comm_split(input,lrank,0,&cross);



Allreduce with two nodes

Perform an allreduce (sum) across each node – all comms inside a node

0 1 2 3 0 2 4 6

rank=0 rank=0

Perform an allreduce (sum) across nodes for rank=0 – comms between nodes

6 6 6 6 12 12 1212

18 6 6 6 18 12 1212

Broadcast result with each node – all comms inside a node

18 18 18 18 18 18 1818

All processors across nodes now have the same value



Summary
• Communicators in MPI

• Many manipulations possible

• A powerful mechanism

• Learn to use!

• Applications of split communicators

• Increasing locality of communication

• Collectives

• hope that MPI implementations do this automatically …

• manual implementation of Allreduce a good test example

• … is there a benefit on ARCHER?


