
Neighbourhood Collectives

Reusing this material

This work is licensed under a Creative Commons Attribution-

NonCommercial-ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US

This means you are free to copy and redistribute the material and adapt and build on the

material under the following terms: You must give appropriate credit, provide a link to the

license and indicate if changes were made. If you adapt or build on the material you must

distribute your work under the same license as the original.

Note that this presentation contains images owned by others. Please seek their permission

before reusing these images.

Topology communicators

• Regular n-dimensional grid or torus topology

• MPI_CART_CREATE

• General graph topology

• MPI_GRAPH_CREATE

• All processes specify all edges in the graph (not scalable)

• General graph topology (distributed version)

• MPI_DIST_GRAPH_CREATE_ADJACENT

• All processes specify their incoming and outgoing neighbours

• MPI_DIST_GRAPH_CREATE

• Any process can specify any edge in the graph (too general?)

Topology communicators
• Testing the topology type associated with a communicator

• MPI_TOPO_TEST

• Finding the neighbours for a process

• MPI_CART_SHIFT

• Find out how many neighbours there are:

• MPI_GRAPH_NEIGHBORS_COUNT

• Get the ranks of all neighbours:

• MPI_GRAPH_NEIGHBORS

• Find out how many neighbours there are:

• MPI_DIST_GRAPH_NEIGHBORS_COUNT

• Get the ranks of all neighbours:

• MPI_DIST_GRAPH_NEIGHBORS

Neighbourhood collective operations
• See section 7.6 in MPI 3.0 for blocking functions

• See section 7.7 in MPI 3.0 for non-blocking functions

• See section 7.8 in MPI 3.0 for an example application

• But beware of the mistake(s) in the example code!

• MPI_[N|In]eighbor_allgather[v]

• Send one piece of data to all neighbours

• Gather one piece of data from each neighbour

• MPI_[N|In]eighbor_alltoall[v|w]

• Send different data to each neighbour

• Receive different data from each neighbour

• Use-case: regular or irregular domain decomposition codes

• Where the decomposition is static or changes infrequently

• Because creating a topology communicator takes time

MPI_Neighbor_allgather

From 1st neighbour
From 2nd neighbour
From 3rd neighbour
From 4th neighbour
From 5th neighbour

To 1st neighbour

To 2nd neighbour

To 3rd neighbour

sendbuf
sendtype
sendcount

recvbuf

recvtype
recvcount

• Same send buffer
for each outgoing
neighbour

• Contiguous chunks in
receive buffer from
each incoming
neighbour

MPI_Neighbor_allgatherv

From 1st neighbour
From 2nd neighbour
From 3rd neighbour
From 4th neighbour
From 5th neighbour

To 1st neighbour

To 2nd neighbour

To 3rd neighbour

sendbuf
sendtype
sendcount

recvbuf

recvtype
displs[5]
recvcounts[5]

• Same send buffer
for each outgoing
neighbour

• Non-contiguous
variable-sized chunks
in receive buffer from
each incoming
neighbour

MPI_Neighbor_alltoall

From 1st neighbour
From 2nd neighbour
From 3rd neighbour
From 4th neighbour
From 5th neighbour

To 1st neighbour
To 2nd neighbour
To 3rd neighbour

sendbuf
sendtype
sendcount

recvbuf

recvtype
recvcount

• Contiguous chunks in
send buffer
for each outgoing
neighbour

• Contiguous chunks in
receive buffer from
each incoming
neighbour

MPI_Neighbor_alltoallv

From 1st neighbour
From 2nd neighbour
From 3rd neighbour
From 4th neighbour
From 5th neighbour

To 1st neighbour
To 2nd neighbour
To 3rd neighbour

sendbuf

sendtype

sdispls[3]

sendcounts[3]

recvbuf

recvtype
rdispls[5]
recvcounts[5]

• Non-contiguous
variable-sized chunks
in send buffer
for each outgoing
neighbour

• Non-contiguous
variable-sized chunks
in receive buffer from
each incoming
neighbour

MPI_Neighbor_alltoallw

From 1st neighbour
From 2nd neighbour
From 3rd neighbour
From 4th neighbour
From 5th neighbour

To 1st neighbour

To 2nd neighbour

To 3rd neighbour

sendbuf

sendtypes[3]

sdispls[3]

sendcounts[3]

recvbuf

recvtypes[5]

rdispls[5]

recvcounts[5]

• Non-contiguous
variable-sized chunks
in send buffer for each
outgoing neighbour

• Non-contiguous
variable-sized chunks
in receive buffer from
each incoming
neighbour

for (int i=0;i<4;++i) {
sendcounts[i] = 1;
recvcounts[i] = 1;

}

sendtypes[0] = contigType;

senddispls[0] = colLen*(rowLen+2)+1;

sendtypes[1] = contigType;

senddispls[1] = 1*(rowLen+2)+1;

sendtypes[2] = vectorType;

senddispls[2] = 1*(rowLen+2)+1;

sendtypes[3] = vectorType;

senddispls[3] = 2*(rowLen+2)-2;

// similarly for recvtypes and recvdispls

MPI_Neighbor_alltoallw

V
E
C
T
O
R

V
E
C
T
O
R

CONTIGUOUS

CONTIGUOUS

CONTIGUOUS

CONTIGUOUS

sendbuf

MPI_Neighbor_alltoallw(sendbuf, sendcounts, senddispls,
sendtypes,recvbuf, recvcounts, recvdsipls, recvtypes,
comm);

V
E
C
T
O
R

V
E
C
T
O
R

recvbuf

rowLen

colLen

Summary

• Regular or irregular domain decomposition codes

• Where the decomposition is static or changes infrequently

• Should investigate replacing point-to-point communication

• E.g. halo-exchange communication

• With neighbourhood collective communication

• Probably MPI_Ineighbor_alltoallw

• So that MPI can optimise the whole pattern of messages

• Rather than trying to optimise each message individually

• And so your application code is simpler and easier to read

