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Overview

• Lecture will cover

- derived datatypes

- memory layouts

- vector datatypes

- floating vs fixed datatypes

- subarray datatypes
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My Coordinate System (how I draw arrays)
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Basic Datatypes
• MPI has a number of pre-defined datatypes

- eg MPI_INT / MPI_INTEGER, MPI_FLOAT / MPI_REAL

- user passes them to send and receive operations

• For example, to send 4 integers from an array x
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C: int[10];

F: INTEGER x(10)

MPI_Send(x, 4, MPI_INT, ...);

MPI_SEND(x, 4, MPI_INTEGER, ...)



Derived Datatypes
• Can send different data by specifying different buffer
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MPI_Send(&x[2], 4, MPI_INT, ...);

MPI_SEND(x(3),  4, MPI_INTEGER, ...)

• Can define new datatypes called derived types

– various different options in MPI

– we will use them to send data with gaps in it: a vector type

– other MPI derived types correspond to, for example, C structs

– but can only send a single block of contiguous data



Simple Example
• Contiguous type

MPI Datatype my_new_type;

MPI_Type_contiguous(count=4, oldtype=MPI_INT, newtype=&my_new_type);

MPI_Type_commit(&my_new_type);

INTEGER MY_NEW_TYPE

CALL MPI_TYPE_CONTIGUOUS(4, MPI_INTEGER, MY_NEW_TYPE, IERROR)

CALL MPI_TYPE_COMMIT(MY_NEW_TYPE, IERROR)
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MPI_Send(x, 1, my_new_type, ...);

MPI_SEND(x, 1, MY_NEW_TYPE, ...)

• Vector types correspond to patterns such as



Array Layout in Memory

• Data is contiguous in memory

- different conventions in C and Fortran

- for statically allocated C arrays x == &x[0][0]
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Process Grid
• I use C convention for process coordinates, even in Fortran

- ie processes always ordered as for C arrays

• and array indices also start from 0

• Why?

- this is what is returned by MPI for cartesian topologies

- turns out to be convenient for future exercises

• Example: process rank layout on a 4x4 process grid

- rank 6 is at position (1,2), ie i = 1 and j = 2, for C and Fortran
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Aside: Dynamic Arrays in C

• Data non-contiguous, and x != &x[0][0]

- cannot use regular templates such as vector datatypes

- cannot pass x to any MPI routine
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float **x = (float **) malloc(4, sizeof(float *));

for (i=0; i < 4; i++)

{

x[i] = (float *) malloc(4, sizeof(float));

}
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Arralloc

• Data is now contiguous, but still x != &x[0][0]

- can now use regular template such as vector datatype

- must pass &x[0][0] (start of contiguous data) to MPI routines

- see MPP-arralloc.tar for example of use in practice

• Will illustrate all calls using &x[i][j] syntax 

- correct for both static and (contiguously allocated) dynamic arrays
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float **x = (float **) arralloc(sizeof(float), 2, 4, 4);

/* do some work */

free((void *) x);

1 5 132 6 103 7 114 8 129x x[0]x[1] x[3]x[2]



Array Subsections in Memory
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C: x[5][4]

F: x(5,4)



Equivalent Vector Datatypes
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stride = 4

blocklength = 2
count = 3

stride = 5

blocklength = 3
count = 2



Definition in MPI
MPI_Type_vector(int count, int blocklength, int stride,        

MPI_Datatype oldtype, MPI_Datatype *newtype);

MPI_TYPE_VECTOR(COUNT, BLOCKLENGTH, STRIDE,                   

OLDTYPE, NEWTYPE, IERR)

INTEGER COUNT, BLOCKLENGTH, STRIDE, OLDTYPE

INTEGER NEWTYPE, IERR

MPI_Datatype vector3x2;

MPI_Type_vector(3, 2, 4, MPI_FLOAT, &vector3x2)

MPI_Type_commit(&vector3x2)

integer vector3x2

call MPI_TYPE_VECTOR(2, 3, 5, MPI_REAL, vector3x2, ierr)

call MPI_TYPE_COMMIT(vector3x2, ierr)
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Datatypes as Floating Templates
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Choosing the Subarray Location
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MPI_Send(&x[1][1], 1, vector3x2, ...);

MPI_SEND(x(2,2)  , 1, vector3x2, ...)

MPI_Send(&x[2][1], 1, vector3x2, ...);

MPI_SEND(x(3,2)  , 1, vector3x2, ...)

MPI_Send(&x[0][0], 1, vector3x2, ...);

MPI_SEND(x(1,1)  , 1, vector3x2, ...)



Datatype Extents
• When sending multiple datatypes
- datatypes are read from memory separated by their extent

- for basic datatypes, extent is the size of the object

- for vector datatypes, extent is distance from first to last data
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extent = 10*extent(basic type)

extent = 8*extent(basic type)

• Extent does not include trailing spaces



Sending Multiple Vectors
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MPI_Send(&x[0][0], 1, vector3x2, ...);

MPI_SEND(x(1,1)  , 1, vector3x2, ...)

MPI_Send(&x[0][0], 2, vector3x2, ...);

MPI_SEND(x(1,1)  , 2, vector3x2, ...)

C F



Issues with Vectors

• Sending multiple vectors is not often useful
- extents are not defined as you might expect for 2D arrays

• A 3D array subsection is not a vector
- but cannot easily use 2D vectors as building blocks due to extents

- becomes even harder for higher-dimensional arrays

• It is possible to set the extent manually
- routine is called MPI_Type_create_resized

- this is not a very elegant solution

• For example, difficult to use vectors with MPI_Scatter to 
scatter 2D datasets
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Floating vs Fixed Datatypes
• Vectors are “floating” datatypes

- this may have some advantages, eg define a single halo datatype and 

use for both up and down halos

- actual location is selected by passing address of appropriate element

- equivalent in MPI-IO is specifying a displacement into the file

• this will turn out to be rather clumsy

• “Fixed” datatype

- always pass starting address of array

- datatype encodes both the shape and position of the subarray

• How do we define a fixed datatype?

- requires a datatype with leading spaces

- difficult to do with vectors

- using MPI_Type_create_resized very ugly
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Subarray Datatype
• A single call that defines multi-dimensional subsections

- much easier than vector types for 3D arrays

- datatypes are fixed

- pass the starting address of the array to all MPI calls

MPI_Type_create_subarray(int ndims, int array_of_sizes[],     

int array_of_subsizes[], int array_of_starts[],         

int order, MPI_Datatype oldtype, MPI_Datatype *newtype)

MPI_TYPE_CREATE_SUBARRAY(NDIMS, ARRAY_OF_SIZES, 

ARRAY_OF_SUBSIZES, ARRAY_OF_STARTS, ORDER,            

OLDTYPE, NEWTYPE, IERR)

INTEGER NDIMS, ARRAY_OF_SIZES(*), ARRAY_OF_SUBSIZES(*),

ARRAY_OF_STARTS(*), ORDER, OLDTYPE, NEWTYPE, IERR
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C Definition
#define NDIMS 2

MPI_Datatype subarray3x2;

int array_of_sizes[NDIMS], array_of_subsizes[NDIMS],

arrays_of_starts[NDIMS];

array_of_sizes[0]    = 5; array_of_sizes[1]    = 4;

array_of_subsizes[0] = 3; array_of_subsizes[1] = 2;

array_of_starts[0]   = 2; array_of_starts[1]   = 1;

order = MPI_ORDER_C;

MPI_type_create_subarray(NDIMS, array_of_sizes, 

array_of_subsizes, array_of_starts, order,            

MPI_FLOAT, &subarray3x2);

MPI_TYPE_COMMIT(&subarray3x2);
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Fortran Definition
integer, parameter :: ndims = 2

integer subarray3x2

integer, dimension(ndims) :: array_of_sizes, 

array_of_subsizes,

arrays_of_starts

! Indices start at 0 as in C !

array_of_sizes(1)    = 5; array_of_sizes(2)    = 4

array_of_subsizes(1) = 3; array_of_subsizes(2) = 2

array_of_starts(1)   = 2; array_of_starts(2)   = 1

order = MPI_ORDER_FORTRAN

call MPI_TYPE_CREATE_SUBARRAY(ndims, array_of_sizes, 

array_of_subsizes, array_of_starts, order,            

MPI_REAL, subarray3x2, ierr)
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Usage

• In many cases, subarrays are easier to use than vectors

- e.g. for 3-dimensional arrays

- will turn out to be useful in parallel IO
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MPI_Send(&x[0][0], 1, subarray3x2, ...);

MPI_SEND(x       , 1, subarray3x2, ...)

MPI_SEND(x(1,1)  , 1, subarray3x2, ...)



Notes (i): Matching messages

• A datatype is defined by two attributes:

- type signature: a list of the basic datatypes in order

- type map: the locations (displacements) of each basic datatype

• For a receive to match a send only signatures need to match

- type map is defined by the receiving datatype

• Think of messages being packed for transmission by sender

- and independently unpacked by the receiver
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send

recv



Notes(ii): Message Matching

Send(1, subarray3x2) matches Recv(6, MPI_FLOAT)

Send(1, subarray3x2) matches Recv(1, subarray2x3)

• Can be useful when scattering data directly to array with halos
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Notes (iii)
• There is an overhead to defining a derived type

- a real code may have many calls to the IO routines

- no need to re-define the data types every time

- array sizes unlikely to change: define types once at program start

• If you do create lots of derived types in a program ...

- they take up memory!

- clear up the memory using MPI_Type_free whenever possible

• But try and avoid:

- do loop = 1, 1000000

• do stuff

• define type

• use type

• free type

- end do
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