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Overview

• What’s the problem?

• What is an asynchronous method?

• Reducing synchronisation in existing models
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The Problem
• Synchronisations often essential for program correctness

- waiting for an MPI receive to complete before reading from buffer

- barriers at the end of an OpenMP parallel loop

- …

• But they cost time

- and slow down the calculation

• Cost is usually not the synchronisation operation itself

- it is waiting for other tasks to catch up with each other

- all calculations have some load imbalance from random fluctuations

- a real problem as we increase the number of cores

• Try to reduce synchronisation

- and let things happen in their “natural” order
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Reference
• See:

- “The Case of the Missing Supercomputer 

Performance: Achieving Optimal Performance on 

the 8,192 Processors of ASCI Q”

- Fabrizio Petrini, Darren J. Kerbyson, Scott Pakin

- http://dx.doi.org/10.1145/1048935.1050204

- “[W]hen you have eliminated the impossible, 

whatever remains, however improbable, must be 

the truth.”

- Sherlock Holmes, Sign of Four, Sir Arthur Conan 

Doyle
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An example
• “Although SAGE [the application] 

spends half of its time in allreduce

(at 4,096 processors), making 

allreduce seven times faster leads 

to a negligible performance 

improvement.”

• Collectives an extreme example

- point-to-point is also an issue

SAGE time per iteration
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Collectives
• Reduce frequency of calculation by a factor X

- e.g. trade more calculation for fewer synchronisations

• Possible because array updates independent of global values

- may not be true for other algorithms, e.g., Conjugate Gradient

- again, more iterations but less synchronisation

loop over iterations:

update arrays;

compute local delta;

compute global delta

using allreduce;

stop if less than   

tolerance value;

end loop

loop over iterations:

update arrays;

every X iterations:

local delta;

global delta;

can we stop?;

end loop
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Barriers

• (Almost) never required for MPI program correctness

• Why?

- because collectives do the appropriate synchronisation

- because MPI_Recv is synchronous
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Normal halo swapping

halo swap

swap data into 4 halos: i=0, i=M+1, j=0, j=M+1

loop i=1:M; j=1:N;

new(i,j) = 0.25*(   old(i-1,j) + old(i+1,j)

+ old(i,j-1) + old(i,j+1)

– edge(i,j)               )
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Point-to-point

• Do not impose unnecessary ordering of messages

- loop now just counts the correct number of messages

• Alternative

- first issue a separate non-blocking receive for each source

- then issue a single Waitall

loop over sources:

receive value from     

particular source;

end loop

loop over sources:

receive value from 

any source;

end loop
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Halo swapping

• Do not impose unnecessary ordering of messages

• Extensions

- can now overlap communications with core calculation

- only need to wait for receives before non-core calculation

- wait for sends to complete before starting next core calculation

loop over directions:

send up; recv down;

send down; recv up;

end loop

loop over directions:

isend up; irecv down;

isend down; irecv up;

end loop

wait on all requests;
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Overlapping

halo swap

start non-blocking sends/recvs

loop i=2:M-1; j=2:N-1;

new(i,j) = 0.25*(   old(i-1,j) + old(i+1,j)

+ old(i,j-1) + old(i,j+1)

– edge(i,j)               )

wait for completion of non-blocking sends/recvs

complete calculation at the four edges
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Halos of Depth D every D iterations
• Smaller number of larger messages; increased computation

halo swap

loop d=D:1:-1

loop i=2-d:M+d-1; j=2-d:N+d-1;

new(i,j) = 0.25*(   old(i-1,j) + old(i+1,j)

+ old(i,j-1) + old(i,j+1)

– edge(i,j)               )
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Swap depth D every D iterations

• Need diagonal communications
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Implementation

• Do 8 non-blocking sends and 8 non-blocking receives

- as opposed to only 4 for depth=1

- ... or 26 vs 6 for three dimensions

- when we wanted to send fewer messages!

• Can “carry” halos rather than explicit diagonal comms

- ordered swaps: left/right after up/down …

- – … but introduces more synchronisation

• Quite hard to implement in practice

- D=1 is (thankfully) special case for 5-point stencil with no diagonals
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Persistent communications
• Standard method: run this code every iteration

MPI_Irecv(..., procup, ..., &reqs[0]);

MPI_Irecv(..., procdn, ..., &reqs[1]);

MPI_Isend(..., procdn, ..., &reqs[2]);

MPI_Isend(..., procup, ..., &reqs[3]);

MPI_Waitall(4, reqs, statuses);

• Persistent comms: setup once
MPI_Recv_init(..., procup, ..., &reqs[0]);

MPI_Recv_init(..., procdn, ..., &reqs[1]);

MPI_Send_init(..., procdn, .... &reqs[2]);

MPI_Send_init(..., procup, ..., &reqs[3]);

• Every iteration:
MPI_Startall(4, reqs);

MPI_Waitall (4, reqs, statuses);

• Message ordering not guaranteed to be preserved
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