
Asynchronous Parallel

Methods

1

Reusing this material

This work is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License.

https://creativecommons.org/licenses/by-nc-sa/4.0/

This means you are free to copy and redistribute the material and adapt and build on the
material under the following terms: You must give appropriate credit, provide a link to the
license and indicate if changes were made. If you adapt or build on the material you must

distribute your work under the same license as the original.

Acknowledge EPCC as follows: “© EPCC, The University of Edinburgh, www.epcc.ed.ac.uk”

Note that this presentation contains images owned by others. Please seek their permission
before reusing these images.

2

https://creativecommons.org/licenses/by-nc-sa/4.0/

Overview

• What’s the problem?

• What is an asynchronous method?

• Reducing synchronisation in existing models

3

The Problem
• Synchronisations often essential for program correctness

- waiting for an MPI receive to complete before reading from buffer

- barriers at the end of an OpenMP parallel loop

- …

• But they cost time

- and slow down the calculation

• Cost is usually not the synchronisation operation itself

- it is waiting for other tasks to catch up with each other

- all calculations have some load imbalance from random fluctuations

- a real problem as we increase the number of cores

• Try to reduce synchronisation

- and let things happen in their “natural” order

4

Reference
• See:

- “The Case of the Missing Supercomputer

Performance: Achieving Optimal Performance on

the 8,192 Processors of ASCI Q”

- Fabrizio Petrini, Darren J. Kerbyson, Scott Pakin

- http://dx.doi.org/10.1145/1048935.1050204

- “[W]hen you have eliminated the impossible,

whatever remains, however improbable, must be

the truth.”

- Sherlock Holmes, Sign of Four, Sir Arthur Conan

Doyle

5

An example
• “Although SAGE [the application]

spends half of its time in allreduce

(at 4,096 processors), making

allreduce seven times faster leads

to a negligible performance

improvement.”

• Collectives an extreme example

- point-to-point is also an issue

SAGE time per iteration
6

Collectives
• Reduce frequency of calculation by a factor X

- e.g. trade more calculation for fewer synchronisations

• Possible because array updates independent of global values

- may not be true for other algorithms, e.g., Conjugate Gradient

- again, more iterations but less synchronisation

loop over iterations:

update arrays;

compute local delta;

compute global delta

using allreduce;

stop if less than

tolerance value;

end loop

loop over iterations:

update arrays;

every X iterations:

local delta;

global delta;

can we stop?;

end loop

7

Barriers

• (Almost) never required for MPI program correctness

• Why?

- because collectives do the appropriate synchronisation

- because MPI_Recv is synchronous

8

Normal halo swapping

halo swap

swap data into 4 halos: i=0, i=M+1, j=0, j=M+1

loop i=1:M; j=1:N;

new(i,j) = 0.25*(old(i-1,j) + old(i+1,j)

+ old(i,j-1) + old(i,j+1)

– edge(i,j))

9

Point-to-point

• Do not impose unnecessary ordering of messages

- loop now just counts the correct number of messages

• Alternative

- first issue a separate non-blocking receive for each source

- then issue a single Waitall

loop over sources:

receive value from

particular source;

end loop

loop over sources:

receive value from

any source;

end loop

10

Halo swapping

• Do not impose unnecessary ordering of messages

• Extensions

- can now overlap communications with core calculation

- only need to wait for receives before non-core calculation

- wait for sends to complete before starting next core calculation

loop over directions:

send up; recv down;

send down; recv up;

end loop

loop over directions:

isend up; irecv down;

isend down; irecv up;

end loop

wait on all requests;

11

Overlapping

halo swap

start non-blocking sends/recvs

loop i=2:M-1; j=2:N-1;

new(i,j) = 0.25*(old(i-1,j) + old(i+1,j)

+ old(i,j-1) + old(i,j+1)

– edge(i,j))

wait for completion of non-blocking sends/recvs

complete calculation at the four edges

12

Halos of Depth D every D iterations
• Smaller number of larger messages; increased computation

halo swap

loop d=D:1:-1

loop i=2-d:M+d-1; j=2-d:N+d-1;

new(i,j) = 0.25*(old(i-1,j) + old(i+1,j)

+ old(i,j-1) + old(i,j+1)

– edge(i,j))

13

Swap depth D every D iterations

• Need diagonal communications

14

Implementation

• Do 8 non-blocking sends and 8 non-blocking receives

- as opposed to only 4 for depth=1

- ... or 26 vs 6 for three dimensions

- when we wanted to send fewer messages!

• Can “carry” halos rather than explicit diagonal comms

- ordered swaps: left/right after up/down …

- – … but introduces more synchronisation

• Quite hard to implement in practice

- D=1 is (thankfully) special case for 5-point stencil with no diagonals

15

Persistent communications
• Standard method: run this code every iteration

MPI_Irecv(..., procup, ..., &reqs[0]);

MPI_Irecv(..., procdn, ..., &reqs[1]);

MPI_Isend(..., procdn, ..., &reqs[2]);

MPI_Isend(..., procup, ..., &reqs[3]);

MPI_Waitall(4, reqs, statuses);

• Persistent comms: setup once
MPI_Recv_init(..., procup, ..., &reqs[0]);

MPI_Recv_init(..., procdn, ..., &reqs[1]);

MPI_Send_init(..., procdn, &reqs[2]);

MPI_Send_init(..., procup, ..., &reqs[3]);

• Every iteration:
MPI_Startall(4, reqs);

MPI_Waitall (4, reqs, statuses);

• Message ordering not guaranteed to be preserved

16

