
Usability looks at developing products and tools that are both useful and easy to use.

In this lecture, I’ll give an introduction to usability and why it is important.

I’ll also describe a set of heuristics for the design of software that is usable.

These heuristics, or rules for good design, do not just apply to graphical user interfaces 

or web sites, but to batch tools, command-line tools, configuration files, and to many 

objects in the real world too.

1



2



In July 1988, Iran Air Flight 655 was shot down by the USS Vincennes in the Persian Gulf.

There have been many explanations as to why this happened, including political, 

psychological and technical.

The usability of the ship’s radar systems has been singled out for criticism.

Three large displays showed every contact.

However, to get speed, range, and altitude, an operator had to explicitly punch up that 

information, which was displayed on a tiny monitor.

This itself is a problem, but the system was also missing data.

Rates of change are important in assessing whether an approaching aircraft is a threat. 

One that is accelerating and descending is a greater threat than one that is ascending.

Crew members had to compare data taken at different times and make the calculation in 

their heads, on scratch pads, or on a calculator, and in a highly-tense environment.

The contractor who developed the display focused not on good design but on cost and 

giving the Navy what said it needed, not what it actually needed.

See “Overwhelmed by Technology: How did user interface failures on board the USS 

Vincennes lead to 290 dead?” Luke Swartz, 2001.

http://xenon.stanford.edu/~lswartz/vincennes.pdf.

Image: https://www.flickr.com/photos/compacflt/5098411676/in/photolist-8LwGaA-

9h989F-osmGVt-ooz2mE-9MTQ8e-9KehR2-bhvMWM-5EnKSv-cfVGHj-deJjmy-6ija7d-

6ijaEw-p4y8kf-pkLUy2-p4yH8J-p4xWe6-d1YUSS-d1tkrL-pYgSr6-pYgSrg-bhvN1g-8LwGhf-

9MTPqx-9MWzTd-9MTQbK-9MTPzM-9Kh7Hm-9Kh88s-9Kh75J-9Kh7rA-8LtCpa-deJjds-

deJjiV-cfVFt7-cfVH97-deJiBS-cfVGVW-cfVGsy-deJis3-cfVFJu-cfVFZW-deJjzx-6adcRH-

9NFVNX-9NJybd-9NGKrb-9NKJWL-9NH11D-9NEwpU-9NGabs

3



Usability problems often occur due to a mismatch between designers, or, in our case, 

software developers, and users.

Designers and developers give the users what they think they want rather than what 

users actually want.

An example of this mismatch can often be found in public parks, where grassy areas 

often have dirt tracks worn across them.

These tracks are called desire paths or social trails.

The public choose the most efficient way through the park from A to B, which may not 

be where the park’s planner has chosen to put their paths, possibly for reasons of 

artistic appeal.

There is an apocryphal story of a university that did not lay any paths in their new 

campus during its first year. 

After the first year had passed, they built the paths over the desire paths, an example of 

user-centred design.

See “Desire paths”, Jussi Ahola, 2 December, 2013, https://medium.com/design-

ux/2b6b5b0f0e92

Image: https://www.flickr.com/photos/wetwebwork/2847766967/

4



Consider the task of writing code.

Which is more usable?

A text editor and a command-line compiler and debugger or an integrated development 

environment such as Eclipse or Visual C++?

Neither or both! 

It depends on the user, their skills, knowledge, background, education, experiences to 

date and personal preferences.

5



Wikipedia defines a heuristic as a “practical method not guaranteed to be optimal or 

perfect”.

Jakob Nielsen and Rolf Molich proposed a set of heuristics for usability, as part of an

expert approach to evaluating the usability of a user interface, called a heuristic

evaluation.

Nielsen then analysed 249 usability problems and, from these, proposed 10 heuristics 

for user interface design.

These heuristics can be used for both the design of usable products or tools and also to 

assess how usable a product or tool is, to identify where the usability problems lie, and 

to propose how its usability can be improved.

6



“Visibility of system status” is defined as: “The system should always keep users 

informed about what is going on, through appropriate feedback within reasonable 

time.”

If not observed, there is a risk that the user may think the software has frozen or run 

into other problems and might exit prematurely.

They may waste time, or lose work, as a result.

Appropriate feedback can include progress bars and status information presented as 

part of a graphical user interface or progress information displayed at the command-

line.

7



“Match between system and real world” is defined as “The system should speak the 

users' language, with words, phrases and concepts familiar to the user, rather than 

system-oriented terms. Follow real-world conventions, making information appear in a 

natural and logical order.”

An interface that displays mathematical symbols and formulae, as they are written on 

the page, speaks the language of science more directly than one which renders these 

into textual equivalents, for example “sin pi slash two”.

In a chemistry package, asking a user to “click the circle widget” is speaking the language 

of a software developer, whereas “select a molecule” is speaking the language of a 

chemist.

8



In the 1980s, characters in maze games on home computers were controlled with the 

cursor or “arrow” keys on the keyboard.

The motivation behind this design is that a user can look at keyboard for reminder of 

what key makes your character move in what direction.

On the ZX Spectrum, these keys were 5, 6, 7 and 8 on the top row of the keyboard.

For moving a character up and down, this required using the 6 key to go down and 7 to 

go up.

So, to move a character up and down required pressing keys that were adjacent to each 

other horizontally.

Designers listened to the complaints of users and, instead, defined key combinations 

such QAOP or AZNM for up, down, left and right movement.

So, to move a character up and down required pressing keys QA or AZ that were above 

and below each other.

Users were less inclined to make mistakes, their character would live longer, and they 

could play their games more easily. 

This is termed minimising the gap between “intention” – what a user wants to do – and 

“action” – what the user actually has to do to carry out their intention.

9



Fast Ticket train ticket machines seem to have just enough depth between their touch-

sensitive glass and the actual display that, unless you are of an average height, the 

buttons appear to be slightly offset from where they actually are.

There are a number of hardware solutions to this problem but one software solution

could be to shrink the visible size of the buttons while increasing their margin for error 

in the touch-screen sensors.

From MSc High Performance Computing student, Angus Lepper, 2015.

10



This heuristic also tries to ensure that information only understandable to developers, 

such as implementation details, does not leak into the user interface.

For example, this medical package expects a URL to be provided.

If an invalid URL is provided then a Java stack trace is displayed.

Would a medical researcher understand this Java stack trace?

If a user ever sees an exception message or code fragment anywhere in a user interface 

then a developer has not done their job properly! 

11



“User control and freedom” is defined as “Users often choose system functions by 

mistake and will need a clearly marked "emergency exit" to leave the unwanted state 

without having to go through an extended dialogue. Support undo and redo.”

This includes:

• Allowing users to cancel tasks that are taking too long, such as copying large files.

• Asking them to confirm actions that may take too long or may have security 

implications, such as running an executable downloaded via a web browser.

• Supporting undo and redo.

• Asking for confirmation of irreversible actions, such as deleting files.

As an example, on Linux/Unix systems, running “rm” to remove a file will often 

immediately remove the file whereas deleting a file within Windows puts it in the 

recycle bin, so it can be retrieved if it was accidently deleted.

12



Amazon’s account menu is problematic in terms of user control and freedom.

If I want to log out, the only option is “Not Michael? Sign Out” but I am Michael!

Do I sign out there too?

This is not a clearly marked exit!

13



“Consistency and standards” is defined as “Users should not have to wonder whether 

different words, situations, or actions mean the same thing. Follow platform 

conventions.”

A menu bar that presents from left-to-right a View menu, then an Edit menu, then a File 

menu is less usable than one that presents from left-to-right a File menu, then an Edit 

menu, then a View menu.

This is because the latter design is far more consistent with myriad products and tools 

than the former.

A similar comment applies to placing the Help menu at the far right-hand-side of a menu 

bar.

Consistency helps users learn to use, and remember how to use, products and tools as it 

allows them to apply their prior knowledge.

Product suites often adopt a consistent look-and-feel across products to allow 

knowledge of how to use one product to be transferred to other products in the suite. 

For example, Microsoft Word, Excel and PowerPoint all share many common menus, 

tabs and icons.

14



Many Linux/UNIX tools support a set of common command-line flags.

For example --version for version information and --help for help information.

15



“Error prevention” is defined as “Even better than good error messages is a careful 

design which prevents a problem from occurring in the first place. Either eliminate error-

prone conditions or check for them and present users with a confirmation option before 

they commit to the action.”

Linux/UNIX can be configured so that users are asked to confirm whether they want to 

delete a file when they use the “rm” command, to prevent them from accidently 

deleting a file.

Windows, likewise, asks users to confirm file deletions, before moving files to the 

recycle bin.

Many products and tools remind users if they have unsaved work if they select to exit, 

and give them the opportunity of saving this work, so they don’t accidently lose their 

work.

Some tools configure their user interfaces to ensure that only valid options can be 

selected.

For example, after selecting a type of device in the Android Toolkit, only valid target APIs 

can be selected by the user.

This prevents the user from creating a virtual device with an invalid configuration. 

16



"... the perceived and actual properties of the thing, primarily those fundamental 

properties that determine just how the thing could possibly be 

used...Affordances provide strong clues to the operations of things. Plates are for 

pushing. Knobs are for turning. Slots are for inserting things into. Balls are for 

throwing or bouncing. When affordances are taken advantage of, the user knows 

what to do just by looking: no picture, label, or instruction needed."

Likewise, bars on doors are for pulling.

The James Clark Maxwell building had a door with both a sign that said “pull” and a 

vertical metal bar.

The other side of the door had both a sign that said “push” and a vertical metal bar.

This was a poor design since someone might push the door if:

1. They didn't read the sign.

2. They did read the sign but their subconscious didn't deem it important enough to 

pass on to the conscious part of their brain, if they were in a hurry.

3. They do not know English.

4. They could not see, either because they were blind or there was dense smoke in the 

corridor, for example.

The problem could be solved, if, on the "push" side of the door, instead of a vertical 

metal bar, a vertical metal plate was placed.

A metal plate afforts pushing.

The door also violates “Match between system and the real world” and, more 

importantly, “consistency and standards”.

17



In some buildings, fire doors have flat panels on the “push” side and routes to fire 

exits are through a sequence of doors to be pushed open. 

So long as you are seeing, or feeling, doors with flat panels ahead, you know you 

are heading to the exit.

Another problem is that if the door was opened to its full width then your knuckles were 

grazed.

This could be prevented by putting in a door-stop.

In this case there was a door-stop but it was there only to prevent the handle from 

banging into the wall, not your knuckles!

From MSc High Performance Computing, student Marton Feigl, 2015.

17



“Recognition rather than recall” is defined as “Minimize the user's memory load by 

making objects, actions, and options visible. The user should not have to remember 

information from one part of the dialogue to another. Instructions for use of the system 

should be visible or easily retrievable whenever appropriate.”

Graphical user interfaces promote recognition via menus, icons, buttons and tool-tips.

A user can recognise the parts of the interface, from their previous experience with this 

or other tools, and so decide what actions they need to take to carry out their task.

Command-line interfaces require recall as a user has to remember what commands to 

run, and how. 

Alternatively, they have to Google!

Reducing what a user has to remember can improve usability.

Bash, FTP, GNUplot, and many Linux/UNIX tools, support built-in help, both about the 

tools as a whole, and specific commands, so all the user needs to remember is the 

command to get help.

Many command-line tools automatically display help if no arguments to the command 

are provided. 

18



“Flexibility and efficiency of use” is defined as “Accelerators – unseen by the novice user 

– may often speed up the interaction for the expert user such that the system can cater 

to both inexperienced and experienced users. Allow users to tailor frequent actions.”

Using the keyboard has been proven by research to be faster than using the mouse.

Allowing users to press TAB to move between buttons and fields in a graphical user-

interface can lead to faster use than if they have to select fields and press buttons using 

the mouse.

This is especially true if the user has to carry out a repeated sequence of actions.

Likewise CTRL and ALT shortcuts allow users to invoke commands within menus.

Linux/UNIX provides keyboard shortcuts to allow previous commands that have been 

run to be browsed, edited and re-run.

The “history” command also allows previously-executed commands to be viewed and 

rerun.

Returning to the train ticket machine example, certain machines do not allow 

combinations of railcard and non-railcard purchases in a single transaction.

This means that the user has to make two separate transactions.

This could be improved by allowing users to combine these purchases within a single 

transaction.

19



Some self-checkout machines allows you to put your own bag on the scale.

But some require a staff member to acknowledge that you have done this.

Instead of waiting for a staff member, customers often unload a precarious pile onto the 

scale and then pack their bag only after they pay.

The customer adopts a non-simple and natural “dialog”, for more flexible and efficient 

use.

It would be easier for customers if staff did not have to verify bags

Image: https://www.flickr.com/photos/jaygooby/2055347396

From MSc High Performance Computing, student Angus Lepper, 2015.

20



“Aesthetic and minimalist design” is defined as “Dialogues should not contain 

information which is irrelevant or rarely needed. Every extra unit of information in a 

dialogue competes with the relevant units of information and diminishes their relative 

visibility.”

SourceForge has projects of the month and editors picks, compared to GitHub which just 

has a sign up form.

Yahoo’s front page is cluttered with all sorts of content.

Google’s is stripped down to the bare essentials, a search form.

21



“Help users recognise, diagnose, and recover from errors” is defined as “Error messages 

should be expressed in plain language (no codes), precisely indicate the problem, and 

constructively suggest a solution.”

Imagine a program to apply some filter to a file.

A NullPointerException indicates an error, but nothing else.

A message, “Error”, at least avoids exposing developer-specific details to the user, but is 

not much more useful.

A message, “File error”, tells the user that the problem is with their file, giving them a 

clue as to where the problem lies.

A message “XML parsing error at line 4 character 2 in configFile.xml. Unknown element: 

databaseUL” , tells the user exactly what the error is and where it arises and a clue as to 

how it can be fixed, by sorting the unknown “databaseUL” element.

22



This rule needs to be applied more subtely for interfaces that support authentication 

and authorisation.

The EASE user interface lets a malicious user know whether the username or password 

was incorrect.

So, they could find out what the valid user names are.

GitHub and Amazon are more subtle and more security-conscious.

They just tell a user when their login has failed but not specifically whether it was the 

username or password that was wrong.

23



“Help and documentation” is defined as “Even though it is better if the system can be 

used without documentation, it may be necessary to provide help and documentation. 

Any such information should be easy to search, focused on the user's task, list concrete 

steps to be carried out, and not be too large.”

Many products and tools, like SmartSVN, provide a Help menu that provides access to 

built-in help pages, which are searchable.

Eclipse has dynamic help and provide help specific to the part of the interface the user is 

working with, for example the Java package explorer or the Java text editor.

As described earlier, many Linux/UNIX shell commands support a “-h” or “--help” flag.

Some tools, that support a rich set of commands, for example Subversion or Git, provide 

command-specific help also.

Many Linux/UNIX commands also have searchable manual, or “man”, pages.

24



Describing what a car does, is different to describing how a car works.

This, in turn, is different to describing how to drive.

It is the same for software.

Describing what software does is not the same as describing how it works.

This, in turn, is not the same as describing how to build and run it.

For research software, there is often a lot of information on what it does and how it 

does it, since this is where the research innovation is embodied.

However, the documentation on how actually to use it is sometimes neglected.

Providing a 10 minute quick start guide on how someone can use your software will help 

them to use it far more than a 100 page manual describing what your software does.

Likewise, explaining how they can use it on their data, to solve their problems, can help 

them even more, applying your software to their research, providing you with a means 

to demonstrate impact.

25



Good documentation also benefits from good design.

For example, if documentation says that a program needs Python, runs under Linux and 

has a library that compiles under C++, does this mean Python 2 and/or 3, Scientific Linux 

7 and/or Ubuntu, the Cray, Intel, GNU C++ compilers or all three?

Being precise in terms of documentation helps prevents errors.

Likewise, instead of telling users what commands to run in paragraphs of English text, 

show them the commands to run, exactly as they should run them at the command line, 

ensuring a match between the system and its documentation.

26



A graphical user interface does not guarantee a usable product or tool.

A badly designed graphical user interface can cause users far more problems 

than a well designed command-line interface.

Usability is a factor of the user, their task, technology (both hardware and 

software), and physical, social and organisational environment.

Don’t say your software has a user-friendly interface because you are biased, you 

wrote it, of course it is user-friendly, to you!

By all means if your users say its user-friendly then quote them!

27



The star life cycle, from Hix and Hartson, shows that usability evaluation, assessing and 

considering issues of usability, contributes to all phases of software development 

whether this be gathering requirements, understanding the tasks users will do, designing 

the software, prototyping and implementation.

The star life cycle complements existing development models e.g. waterfall, rapid 

prototyping or agile methods to remind developers that usability should be considered 

always and everywhere.

28


