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Motivation

• Is there a ‘Software Crisis’?

• Many software projects are unsatisfactory
– lots fail to meet their design goals
– lots exceed budget or time constraints significantly 
– some are total disasters and are abandoned at huge cost
– see Computer Weekly for regular examples of software disasters

– often paid for by the taxpayer!
– e.g. air traffic control, health software, passport office

• Many reasons for software project failure
– but good software design is a critical weapon against such problems
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Motivation

• Good software design 
– reduced uncertainty 
– improved quality and predictability
– improved chance of meeting the design goals
– improved chance of finishing on time and within budget
– documented history of what you were trying to achieve

• Makes your life better
– less time debugging
– adding new features will be easier
– less stress, fewer grey hairs
– more reward
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Motivation

• People will like you
– whoever’s maintaining the software will thank you
– customers will respect you and come back for more
– bosses will promote you
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Introduction to Design

• What is design?
– ‘the act of working out the form of something, as by making a sketch 

or outline or plan’ Wordnet

– in this course the something is referred to as an item

• What is a design?
– it’s the sketch or outline or plan for the item
– it’s a description of some kind

– or indeed the final item itself
– it’s an approximation to the form of an item
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A Design
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design final item

• Here’s a design and a final item
– note some differences between the design and the final item
– the design is an approximation to the form of the final item



What’s the Point?

• The point of a final item is to solve some problem for humans
– a car solves the problem of getting to the shops
– a jumper solves the problem of being cold

• But an item only solves the problem if it satisfies certain 
goals
– a car doesn’t solve the problem if it’s too small to get inside
– a jumper doesn’t solve the problem if it’s too thin

• The point of design is to improve the chance of the final item 
meeting the design goals
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Design Goals

• Functional goals
– ‘what it does’
– e.g. the item must transport at least one person
– e.g. the item must allow someone to stay warm in winter

• Performance goals
– ‘how well it does it’
– e.g. the item must have a top speed of at least 30 mph
– e.g. the item must not be heavier than 0.25 kg

• A ‘good’ final item is one which satisfies the design goals
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A Project
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• The aim of a project is to arrive at a good final item

• How do we get from ‘no design’ to ‘final item’?

final itemno design last design 
(before building)

Design Phase Build Phase

– by a series of steps
– traditional projects often divide into two main phases



The Design Phase

• How do we get from ‘no design’ to ‘last design’?
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final itemlast design 
(before building)

no design

Design Phase Build Phase



Design Evolution

• Example: design something to live in
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Design Evolution

• Designing involves two main things:
– 1. having ideas
– 2. realising they’re rubbish

• Identify and correct design defects
– which will otherwise lead to the final item failing the design goals
– problems, errors, inconsistencies

• It’s an inventive, difficult process
– have to generate lots of ideas
– being full of ideas isn’t easy!
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Design Evolution

• It’s an uncertain, unpredictable process
– don’t know if or when a design defect will be identified
– don’t know how much back-tracking will be required
– very difficult to estimate how long it will take to design something

• It’s ‘Iterative Refinement’
– may involve significant back-tracking
– it’s rather like exploring a tree (in computer science)
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The Design Tree
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Design Evaluation

• Need to somehow find a path that leads to a good 
final item
– otherwise the project will be a failure

• Want to minimise the length of the path
– can’t afford to search exhaustively down every branch
– some back-tracking is inevitable but we want to minimise it
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badgood

• So for any design we need to evaluate whether it’s on a good 
or bad path
– in particular, for the last design we need to predict how good the final item will 

be before we build it



Design Evaluation

• Key problem: design evaluation is very difficult
– search for design defects, inconsistencies etc.
– if you find them then the design can’t be very good so correct them
– but still can’t guarantee that the final item will satisfy all the design 

goals until you actually build it

• No easy answer
– no substitute for experience and practice
– but you can use the ‘Big 3 Design Criteria’ to help gain insights into 

how good your design might be

17



The Big 3 Design Criteria

• 1. Detail
– how approximate is the design?

• 2. Intersection
– how much common ground is there between the design and a good 

final item?

• 3. Merit
– how many desirable properties does the design have?
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1. Detail

• How much detail does the design have?
– how closely does it approximate a final item?
– how far down the design tree is it?

• Designs can differ widely in how closely they approximate 
the final item 
– e.g. a scribble on the back of an envelope 
– e.g. a 500 page design document
– both are designs but at different levels of detail
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High Detail

• A design may be a close approximation to an item 
– a house architect’s blueprints
– a well-written cake recipe
– a silicon-level layout schematic for a new computer chip
– the final item itself

• All have a high level of detail

• Greater understanding of the final item

• Less risk and uncertainty
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Low Detail

• Many designs are not such good approximations
– significant absences in the design 

• Low detail designs
– haven’t solved enough of the problem
– are insufficiently specified to allow predictions about the final item
– the only valid prediction is that there is more design work to do
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2. Intersection

• Intersection is the common ground between the design and a 
good final item
– the amount of key features that are common
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High Intersection

• High intersection is very valuable

• Even a low detail design may be quite useful if it has high 
intersection
– because it’s something you can build on
– think of such a design as high up the design tree but on a good path
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good final item
design
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High Intersection

• Example: low detail but high intersection
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design good final item



Low Intersection

• Low intersection designs
– are somewhere down a bad branch in the design tree
– are unlikely to satisfy the basic functional design goals
– probably won’t ‘work’
– may lead to a disastrous project
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Low Intersection

• Example: high detail but low intersection
– basic functional design goal was to provide transport over water
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3. Merit

• How many desirable properties does the design have?
– in the context of the design goals

• Examples of desirable properties:
– might want it to be efficient, cheap, cunning, elegant, fast, light, 

effective, easy-to-use, attractive, bright, reliable, maintainable, 
powerful, strong, pliable, adaptable etc. etc.
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High Merit

• Suppose transporting groceries is a design goal
– either round or hexagonal wheels will do the job
– but round wheels are smoother
– smoothness is a desirable property (stops your eggs breaking)
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high merit design low merit design



High and Low Merit

• High merit designs
– often have something intuitively appealing about them
– e.g. enjoy the simple yet elegant effectiveness of an egg shell!
– high merit often goes hand-in-hand with cunning simplification

• Low merit designs
– may be cumbersome, inefficient, ugly, unreliable etc.
– are unlikely to satisfy the performance design goals
– won’t win you any prizes or friends
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Design Criteria Summary

• Detail
– without it you can’t make any predictions about satisfying the design 

goals

• Intersection
– without it you won’t satisfy functional design goals

• Merit
– without it you probably won’t satisfy performance goals

• If you’re confident you have all three
– then you probably have a good design! – not guaranteed
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The Design Cube

• Visualisation aid for design quality
– based on the Big 3 Design Criteria
– tilt the design tree on its side
– add axes for detail, intersection and merit to make a cube
– consider where your final item and designs are inside the cube 
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The Design Cube
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Final Items
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Good Case

34

in
te

rs
ec

tio
n

merit
no design

good final item

good design



Bad Case
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Design decomposition

• As level of detail increases back-tracking becomes more 
expensive. (You have invested more effort in the work you 
are throwing away).

• Early in the design process try to decompose the design into 
component designs.
– Minimise dependencies between components.
– Pay special attention to designing component interactions.

• Hopefully required design changes will be restricted to a 
small number of related components.
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Design Phase Summary

• The design phase is an iterative refinement process

• Design evaluation is a key skill
– need it to refine a design into a better one

• But it’s difficult

• Get some insights into design quality from 
– the Big 3 Design Criteria of detail, intersection and merit
– the design cube
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The Build Phase

• Using the design to build the item
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final itemlast design 
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Design Phase Build Phase



The Build Phase

• But some detail will be missing from the design
– the design is an approximation after all

• And there may be defects in the design which aren’t 
discovered until you start to build

• Have to identify and correct those defects as you go

• So what are you doing?
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• Designing!

• The design continues to evolve during building



A Project Revisited

• If design is difficult, creative and uncertain, then the whole 
project must be too!
– something for the project manager to bear in mind
– one reason to become really good at design
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Designing and Building

• The distinction between designing and building may be 
blurred further still

• Prototypes may be used to test early designs
– probing to the next level of detail gives confidence of intersection
– or if it doesn’t work, at least you’ll know there is no intersection!

• Design changes made during building may (should!) be fed 
back into the documented design
– to keep the project history accurate
– to make it easier to extend or enhance the design later
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A Project Revisited
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Software Design

• What is software design?

• Traditionally it’s is a single phase of activity near the start of a 
software project – modern software engineering does not 
take this view
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Software Design

• As in general projects, design work is involved throughout
software projects

• Every decision about the software from what it does to how it 
does it is a software design decision
– functionality, user interface, system architecture 
– choice of programming language, data formats/structures
– module/class/object decomposition 
– variable naming etc. etc. etc.

• It’s an ongoing activity
– starts when the product is conceived
– finishes the day the software gets its final release
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Software Design Phases

• Replacing ‘building’ with ‘coding’:
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Software Design Phases

• Requirements capture
– analyse the problem being addressed and establish the design goals

• Functionality design
– design the behaviour of a system which will satisfy the design goals

• System design
– design the architecture of the system and its components

• Code design
– detailed design of the lines of code that make up the components

• Final test
– testing (in some form) applies to all the previous phases
– this is a final test phase before software release
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Software Design Phases

• Not necessarily a rigid ordering of phases

• Software development models
– Waterfall, Staged Delivery, Evolutionary Prototyping etc.
– might backtrack to a previous phase on discovery of major flaw
– might do a bit of each then repeat the cycle

47

Functionality 
Design

System 
Design

Requirements 
Capture

Final 
Test

Code 
Design

• But these are the main activities and this is the natural 
ordering



Early Design Overview

• Early design
– what you do before you start coding and why it’s important

• Three main activities
– requirements capture
– functionality design
– system design

• Describing designs
– tricky problem
– text, pictures, formal diagram techniques e.g. UML

• Conclusions
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Software Design Phases 
Revisited

• Want to make sure that the ‘last design before coding’ is 
a good one
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Early Design

• What happens if the last design before coding is poor or 
non-existent?
– you’ll be coding without a clear idea of what you’re trying to 

achieve and why and how
– you’ll be moving to fiddly detail before getting the basics sorted

– You need to walk before you run
– you’ll hit problems continuously, and fixing them will be costly

– The later a change is, the more expensive
– everything will take longer and the outcome will be poorer
– A big reason for failure and overspending
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The Design Cube Revisited
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Software Design Phases 
Revisited
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Early Design

• 1. Requirements Capture
– “what exactly is the problem we’re trying to solve?”
– analyse the problem and establish the design goals
– results in a requirements document

• 2. Functionality Design
– “what’s the solution going to do?”
– functionality and user interface
– results in a functional specification document

• 3. System Design
– “how’s it going to do it?”
– system architecture and detailed design to some level
– results in a system design document
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Document Production

• The outcome of each of these phases is a document

• The length of these documents should be proportional to 
the size of the project

• But every project should have them in some form
– the benefits of knowing what you’re trying to achieve beforehand 

cannot be overestimated!
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1. Requirements Capture

• “What exactly is the problem we’re trying to solve?”
• Aim to produce a Requirements document including:

– Problem Statement
– Functional Goals

– Basic
– Secondary
– Enhancements

– Performance Goals
– Non-functional Requirements
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Obtaining Information

• Who is your ‘customer’?
– external organisation
– internal department
– funding body 
– research colleague
– focus on whoever gives the ‘thumbs-up’ at the end

• Use all appropriate means to probe for accurate detailed 
information about the problem
– face to face discussions
– observation of existing system (if any)
– study of existing documentation (if any)
– questionnaires
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The Unreliable Narrator

• Customers are like unreliable narrators in novels
– you may get a mixture of truths, half-truths and outright falsehoods!
– you may get conflicting information

– particularly when several people have a say
– information may be withheld (inadvertently or otherwise)

• But if the software solves the wrong problem, the customer 
will blame you!

• So try to untangle the requirements mess as early as 
possible
– probe into the dark corners
– overturn the stones
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Cans of Worms

• Retailer: “I want a simple program to print out reports of all 
my current stock”
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– what's the input data?
– how's it going to be entered?  manually?  bar-code swiping?
– how is the stock data to be stored?
– what sort of reports do you want?  sorted?  grouped?
– how often do you want them generated?
– what if it takes 5 minutes to generate?  is that too long?
– do you really mean print to a printer or to the screen?
– what if there are reams and reams of it?



The Underlying Problem

• The customer’s perception of the problem may not reflect 
the real underlying problem!
– what the retailer really wanted to know was "Do I have a TX354-2 out 

the back?"
– he was going to manually scan through the list of stock until he came 

to TX354-2 in the part number column
– the underlying problem was the ability to query a stock database

• Need to understand the underlying business or technical 
problem that needs to be solved
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Requirements Summary

• Gather the information you need

• Resolve conflicts and inconsistencies

• Write a clear and concise Requirements document 

• Seek the customer’s approval of the document before 
proceeding
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2. Functionality Design

• “What’s the solution going to do?”
– design the behaviour of a system which would satisfy the requirements 
– propose a software solution without worrying unduly (yet) about how to   

build it

• Aim to produce a Functional Specification document including:
– the main features of the user interface 

– and how the user will interact with the UI to achieve their tasks (use 
model)

– the input data 
– and how the system will modify it

– the main functionality
– and how it will operate on the data in order to satisfy the 

requirements
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User Interface Design

• Different user interfaces for different applications

• Designing the main features of the UI early on is highly 
recommended

• UI prototyping
– Balsamiq
– Lumzy
– Pencil
– Pen and Paper
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User Interface Design

• May have to cater for different types of users
– novice users may want to be hand-held through it
– expert users usually want to whiz through it with as few mouse 

clicks as possible

• UI conventions have evolved over the years

• Save your originality for devising intuitive ways of 
displaying data specific to your application domain
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Use Model

• How will the user accomplish their tasks through the user 
interface?
– consider the various ‘flows’ through the software
– document the sequences of UI interactions necessary
– show what happens to the user’s data (files) on the way

• Can be very helpful
– for clarifying your own ideas about how the system will behave
– for describing to the customer how it will behave
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Emphasis on Data

• In general, customers understand their data
– it’s important and precious to them

• So communicate with them in terms of things they 
understand

• Show them:
– what you think their data is
– what you’re going to do to their data
– what new data you’ll leave them with at the end of the day
– what hoops they’ll have to jump through to get it

• And they’ll tell you if it’s a system they want
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Main Functions

• What are the main functions of the system?

• For each main function describe the following:
– its behaviour
– its input and output data
– how the data is modified by the function

• Use pictures and examples wherever possible
– saves lots of typing, aids understanding
– e.g. a “dog-leg removal” function in a chip layout program
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Design Evolution Revisited

• Designing involves two main things:
– 1. having ideas
– 2. realising they’re rubbish (and why they’re rubbish)

• Iterative refinement
– try not to fall in love with your first idea
– through perseverance and cunning you may come up with a 

valuable simplification

• Encourage ‘off the wall’ thinking
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Design Evaluation Revisited

• Detail
– have you described the functionality in sufficient detail for it to be 

meaningful?
– “and there will be a graphical user interface” is not sufficient detail!

• Intersection
– will the functionality that you’ve described satisfy the design goals?
– does your functionality solve the right problem?
– is the functionality consistent and coherent?

• Merit
– does the behaviour you’ve described have desirable properties?
– is the system as simple as possible?
– is it intuitive?
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Design Evaluation

• Probing to the next level of detail beyond the level you’re 
documenting can be very useful
– helps establish the quality of what you are documenting

• E.g. “the interpolation facility will operate on the curve 
data which is passed in”
– sounds fine
– but on probing to the next level of detail you discover that the 

interpolation facility also needs a point at which to interpolate the 
curve

– where’s this point going to come from?
– oops - inconsistency exposed
– much cheaper to fix it sooner than later
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Functional Design Summary

• Design the behaviour of your solution
– and prototype the user interface if possible

• Iteratively evolve and improve the design
– focus on the critical features first

• Try to gain confidence in its quality
– evaluate it and get someone else to review it

• Write a clear and concise Functional Specification 
document describing it

• Again seek document approval from the customer
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Practicalities

• Unfortunately, the functional spec could be a lot bigger than 
the requirements document
– if it’s more than 30 pages you may have trouble getting it read at all
– “I’ve already given you the requirements, it’s your job to build the 

system so it satisfies them”

• It’s a trade-off between detail and practicalities
– make sure that what detail you have adds value
– emphasise the data so the customer has a direct interest
– put the UI description and use model towards the front

– for some reason everyone has an opinion on user interfaces!
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3. System Design

• “How’s the solution going to work?”
– how will the documented behaviour be realised in software?

• Aim to produce a System Design document including:
– system architecture

– how the system will be composed of smaller components or 
modules

– component descriptions
– responsibilities and interfaces
– where will the main functions reside?
– main data structures and algorithms

– solutions to key technical problems
– enough detail that moving to code doesn’t seem like a huge step!
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System Architecture

• ‘Top-down’ approach is common
– split the system into components or modules

– user interface
– database
– core functionality
– options package etc.

– split the components into sub-components and so on

• Identify the interdependencies between the different 
components
– try to group data and functionality so as to keep dependencies 

across component boundaries to a minimum
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Components

• Why has this component been defined?
– what’s its purpose?
– ensure the component has clear goals and responsibilities

• Which of the component’s functions will form the 
interface to the outside world?

• Which of the main functions will reside in this component?
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Components

• How will the component’s data be modeled in software?
– arrays, records, structs, objects?
– what will they contain?
– what’s the lifetime of the data?
– who’s responsible for the creation / destruction of which data?

• What are the main algorithms and how will they be 
implemented?
– give pseudo-code if appropriate
– pseudo-code shouldn’t just be verbose normal code!
– Pseudo-code should help not hinder
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Pseudo-Code Example

• Graphics update algorithm
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for each open window, w {
for each of w’s objects, obj {

if obj has been modified since last redraw then {
redraw obj
clear obj’s modified flag

}
}

}



When to Stop?

• When should you stop documenting the system design and 
actually start coding?
– tricky matter of judgement

• Things to ask yourself to see if you’re ready
– are there any parts of the design I’m particularly nervous about?
– is my vision of the system the same as that of my co-developers?
– is there enough design detail for coding to be an orderly guided 

activity?
– do I think I’m close enough to the top-right corner of the design 

cube?

• Often worth going to pseudo-code detail for trickier areas 
first
– quicker than writing and compiling real code
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System Design Summary

• Design the architecture of the system

• Design the components and their interactions

• Evolve and improve the design

• Check it relates closely to the Functional Spec

• Write a clear and concise System Design document

• Unlike the Requirements and Functionality documents, this 
is an internal document
– for the benefit of the developers when they start coding in earnest
– customer doesn’t care how it works as long as it does work
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Design Issues



Keeping Documents Alive

• For some projects documents quickly ‘die’
– they are written, looked at initially, then forgotten

• Often worth investing time updating new revisions as the 
project progresses

• Don’t bother adding large amounts of new detail
– the document size will become unmanageable
– the detail will be documented in the code after all (won’t it!)

• But try to keep them reflecting reality
– reap rewards when someone new joins the team or someone else 

has to maintain the system
– valuable history of how the requirements, functionality and system 

design developed over time
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Describing Designs

• Designs can be large and involved
– difficult to describe concisely and consistently
– this is a serious problem for many projects

• What are the options for describing a design?
– text
– pictures and diagrams
– formal diagram techniques
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Text Descriptions

• Potentially the most expressive and accurate technique

• But also the least concise

• Difficult to maintain self-consistency

• Employ the obvious ‘do’s of technical writing
– decompose the document into sections and subsections
– use short sentences
– use short paragraphs
– use bulleted lists for clarity
– use section references to avoid duplicating information
– read what you are writing
– could you convey the same information in fewer lines?
– Diagrams are your friend
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Pictures and Diagrams

• People are much more willing to study 
pictures than text
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• Quick Diagram Production

• Balsamiq, Dia, in package tools.



Pictures and Diagrams
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• Scope for confusion though

– the reader may not interpret your picture the way you intended

Joseph Jastrow, 1899 “The Minds Eye”



Formal Diagram Techniques

• Various techniques have evolved in recent decades
– an attempt to capture design aspects more precisely and concisely 

than textual descriptions

• Effectively they are visual languages
– if everyone interprets a language in the same way then design ideas 

can be communicated accurately and concisely

• Well-defined semantics 
– computers can help in diagram production and consistency checking
– some tools generate skeleton code from the diagrams

• Use them to describe designs to yourself/your team
– don’t expect customers to understand them
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Formal Diagram Techniques

• Older ones from Structured Systems Analysis
– Data Flow Diagrams (DFD)

– for the transfer of data in and out of program units
– Control Flow Diagrams (CFD)

– for algorithms
– Entity-Relationship Diagrams (ERD)

– for the associations between pieces of data in a database

• Newer ones from Object-Oriented Analysis 
– Object Modeling Technique (OMT)
– Unified Modeling Language (UML)

• UML
– various diagram types to capture different aspects of a system
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UML Diagram Types

• Class diagrams
– shows static structure of the system’s data entities (classes) and 

how they relate to each other
– bit like entity-relationship diagrams

• Object diagrams (or instance diagrams)
– example snapshot of the system’s data (objects / instances) at 

runtime
– “limited use, just examples”
– very useful for understanding! 

• Various others:
– use case diagrams, sequence diagrams, collaboration diagrams, 

state diagrams etc.
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UML Class Diagram

• Solar system example
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HeavenlyBody
name: String
mass: Float
diameter: Float

Star
brightness: Float

SolarSystem
name: String

Planet
hasLife: Boolean 0..*   orbits      1

0..*
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UML Object (Instance) Diagram

• Solar system example
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:Planet
name = “Venus”
mass = 1364353
diameter = 3856
hasLife = False

:Planet
name = “Earth”
mass = 1425665
diameter = 4532
hasLife = True

:Planet
name = “Mercury”
mass = 64956
diameter = 2534
hasLife = False

:Star
name = “The Sun”
mass = 9354593
diameter = 15238
brightness = 670.34 orbits

:SolarSystem
name = “Our one”

orbits
orbits



Design Issues Overview

• Key issues for software design
– Critical Features
– Software Design Trade-Offs 
– Problem Anticipation 
– Cunning Simplification
– Software Design Evolution
– Elimination of Design Ambiguity
– Fitting In not Forcing Change
– Adaptation
– Pride in Software

• Conclusions
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Critical Features

• Designing non-trivial artifacts is a big problem

• Manage complexity
– focus on essentials

• Tackle ‘critical features/requirements’ first
– Central to the system
– Basic functional goals
– Highest degree of expected difficulty or uncertainty
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Toaster

• Basic Function
– To brown bread by exposure to heat 

• What are the critical features?

• What are the unknowns?

• Which features are more certain?

• What are the niceties?

Pictures –

D-12 Toaster – Public Domain

Sunbeam Toaster – Donovan Govan (Creative Commons License)
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Toaster

• Prioritise the feature list
– Toasting element
– How the bread is held
– The power input
– Safety aspects
– Cancellation
– How to load the unit
– How much is toasted at a time
– Darkness control
– Smoke detection
– Does it defrost?
– Aesthetics
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Critical Features

Important Features

Needed Features

Would be Nice Features



Toaster Critical Features

• Two critical features

• Toasting Element
– Reusable and resilient
– Sufficient Heat to toast the bread

• How the bread is held
– close distance without touching
– Repeat - should not touch the element
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Text Editor Program

• Consider a simple text editor program
– allows text insertion and deletion at the insertion point (IP)
– can move the insertion point with cursor keys
– allows sections of text to be given a specified font
– save and restore

• Critical Features of the Design?

• Known/Understood Features?
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Critical Features

• Data structure for the text
– easy insertion/deletion at a current position?
– Moving around the text in a non-linear fashion?
– accommodate different fonts?
– Mass font/style changes?

• Display of the text
– How much text to display? 
– how to accommodate around the current position?
– Re-drawing when data changes?
– Moving around to un-displayed data?
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Less Critical Features

• Format for the saved file

• Deciding on the complete list of fonts

• Deciding on the kind of menu for font selection
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Observations

• Critical features are often
– depended on by other features
– Converters
– interfaces
– require leaps of invention

• Sometimes all the features seem critical!
– Experience, planning, intuition help with this 

• Independent features are inherently less complex and can be 
given lower priority
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Text Editor Data Structure

• Obvious solution is a big array of characters
– Excellent for moving the IP left or right
– Bad for insertion and deletion
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jonh e l l o \n J o n ... 
hello
jonh e l l o \n J o n ... 
hello
joanh e l l o \n J o a n ... 
hello

• A ‘split-stack’ approach would be better
– Still pretty good for moving the IP left or right
– Excellent for insertion and deletion

jonh e l l o \n J ... o n 
hello
joanh e l l o \n J o a ... n 
hello
jonh e l l o \n J o ... n 
hello



Text Editor Data Structure

• What about fonts?  
– Store the font on a per-character basis?
– Simple solution but doubles the memory requirement
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jonh e l l o \n J ... o n 
hello

C C C H H HHH H

h e l \nol J ... o n<> > <
jon
hello

– special markers for font regions?

– On average reduces memory requirement
– But what if the user changes font for ‘ello’?
– Re-marking the regions could become tricky
– A choice between memory and complexity



Software Design Trade-Offs

• Recall that for a design to be good we need high merit

• Common desirable software properties 
– low time (to run)
– low space (memory)
– low complexity (of design)
– low difficulty (of use)
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Desirable Properties

• Low time
– users always want a faster runtime

• Low space
– requiring too much memory will degrade the runtime (sometimes 

terminally) and restrict the set of suitable platforms

• Low complexity
– simpler designs tend to be cheaper to build and easier to maintain

• Low difficulty
– if the resulting software is not easy to use, then it is useless
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Common Trade-offs

• Space vs Complexity

• Time vs Space

• Time vs Complexity

• Complexity vs Difficulty
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Resolving Trade-offs

• No magic or one size fits all solution

• Evaluate relative priorities on a case-by-case basis

• In the absence of other factors, we suggest using the 
following facts for guidance
– memories keep getting bigger
– machines keep getting faster
– life is finite and the remainders of our lives gets shorter every day
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Life-Centric Priorities

• 1. Low complexity
– high complexity complicates testing and debugging

• 2. Low difficulty
– Difficult to use software will annoy and frustrate users

• 3. Low time
– Software should take a reasonable time to run for the task

• 4. Low space
– there will probably be a bigger machine next year, but do not get lazy 

and complacent
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Problem Anticipation

• Being able to look at a proposal and say “No, it won’t 
work, because …”

• Careful consideration of implications of current design 
decisions

• Ask probing questions of the design/designer

• Can be perceived as a negative skill

• Can have very positive effects
– wiping out whole branches of the design tree
– improving chances of arriving at a good design

• The earlier a problem is found the better
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Problem Anticipation
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last designs 
(before building)

no design

bad good
final items

bad bad bad

“No, it won’t work”



Cunning Simplification

• high merit designs are often the simplest

• Simple design does not equate to naïve design

• It is often cunning which brings about the simplicity

• Consider the classic Quicksort algorithm
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Quicksort

• Quicksort uses partitioning 
– pick a pivot element, p (e.g. the first in the array, 6)
– start from the left and right ends and move inwards
– swap left elements >= 6 with right elements <= 6

109

• Cunning observation:

– if you partition an array, the two partitions may then be sorted 
independently

– this simplification may be applied recursively

6 2 7 9 5 4 3 8

3 2 4 5 9 7 6 8 partitioned about 6



Quicksort Example
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6 2 7 9 5 4 3 8

3 2 4 5 9 7 6 8

partition about 6

3 2 4 5 8 7 6 9

partition about 3 and 9

partition about 3, 4 and 8

2 3 4 5 6 7 8 9 partition about 6

2 3 4 5 6 7 8 9 degenerate case - sorted



Quicksort

• The result is a very fast yet simple sorting algorithm

• Quicksort is an example of ‘Divide and Conquer’

• Detail, Thought, Ingenuity
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Software Design Evolution

• Designs change – more detail, change in goals …

• ‘Iterative Refinement’

112

• Consistency is important



Software Design Evolution

113

• Next stage is to add a garage

• Bad to just abut it against the house wall

• Much better to alter part of existing wall first

• Formerly excellent pieces of design may need re-work when more parts are 
added



Consistent Designs

• Early designs tend towards
– High intersection
– high merit
– low detail

• Important for Design
– Simple
– Elegant
– Clean
– Self-consistent

114



Consistent Designs

• When adding more detail or features aim for careful and 
consistent extension

• Often result is a quick hacky extension

• But what is one quick hack?

• End up with a ugly, inconsistent, unmaintainable product

• High detail but low intersection and very low merit
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Getting Inconsistent

• Often appears easier to add a quick dirty ‘solution’ than 
do it properly

• False Economy

• Consistent evolution requires a clear understanding of the 
current design 

• Lack of understanding breeds a reluctance to modify 
existing code for fear of breaking it

• Better to restructure the original code and re-test it
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Simple Example

• Suppose there’s a function to print someone’s name and 
age, but you just want to print their name
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void printName (int i) {
// Print out all the name of the person at the argument index.
printf(“Name is %s \n”, names(i));

}

• You could simply add this:

void printNameAndAge (int i) {
// Print out the name and age of the person at the argument index.
printf(“Name is %s \n”, names(i));
printf(“Age is %d \n”, ages(i));

}



Simple Example (cont.)

• Change the original function to use your new one:
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• Avoids code duplication 

• Avoids potential for future inconsistency bugs

void printName (int i) {
// Print out all the name of the person at the argument index.
printf(“Name is %s \n”, names(i));

}

void printNameAndAge (int i) {
// Print out the name and age of the person at the argument index.
printName(i);
printf(“Age is %d \n”, ages(i));

}



Trying to do it right

• What should you do when faced with extending a 
inconsistent code-base?

• Don’t panic, and don’t make it worse

• Try to get extra time to smooth out the code
– always a good investment even though it adds no new functionality
– ‘refactoring’
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Eliminate Design Ambiguity 

• A component or function needs to have a clear function

• If a function can have multiple interpretations there may be 
problems

• Where ambiguities arise:
– Naming
– Responses
– Side-effects
– Hidden Knowledge



Naming

• Functions, Components should all have clear and 
unambiguous names 
– except for common methods
– Don’t come up with multiple names of printObject or toString

• Common in database applications

• If something can be confused as to purpose or be confused 
with another function or variable – clarify it

• Corrections – in databases can prefix with tables and 
databases

• Corrections – in programming can use module prefixing or 
aliasing



Responses

• Try to ensure when defining responses – especially error 
responses that one type of response is:
– Always consistent – HTTP 404 – requested resource not found – not 

server not found
– This is a consistent across modern web platforms

– Clearly Defined – responses should have a definite form and meaning
– For example the result of a calculation should be a value or error

• If you cannot accurately write down what a response from a 
function or error handler is then something is wrong – this 
will lead to problems for other developers and users



Side-Effects

• Procedures can have side-effects

• Make sure these are listed and defined in the documentation 
and code commentary

• What are side-effects
– Changes to program data
– Changes to system status
– Alteration of program behaviour

• These may not always the primary purpose of a function or 
procedure – it stills needs to be defined



Hidden Knowledge

• Lots of types of hidden knowledge
– Function parameter meaning
– dependencies

• Do not hide away function parameters
– Default settings or values should be explicit
– Alternative values should be explicit

• Make sure dependencies of objects and functions are explicit

• Hidden Knowledge in the development environment leads to 
duplication of work or erroneous use



Fitting In

• If you want people to use your software then do not force 
major changes in the way they work

• Software Adoption is driven by fitting in
– Makes users feel important
– Limits disruption of changes
– Shows understanding of problem areas

• Major changes in work patterns will reduce user satisfaction

• Exception – where a new method of working can be proven 
to be better – more efficient or more accurate – then 
negotiate with the client



Adaptation

• Nothing stays the same

• Even in short projects the requirements can shift

• Most of the time the shift will be minor – few projects will 
completely change their purpose or focus

• Do not despair when a client asks for change
– Negotiate
– Accommodate
– In rare circumstances Refuse

• Change is normal 



Pride in Software

• Designers, Artists and Architects take pride in their work

• Great designers like to show off their work

• They learn a lot from seeing each other’s work
– Constructive Criticism of own work by peers

• Software designers can be reluctant to do this
– Everyone makes mistakes
– People who think they are infallible are a problem on a project
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What is Design Conclusions

• Good software design will make our lives better

• We design so that items satisfy design goals

• Design is inventive, iterative, difficult and unpredictable

• Designs must be evaluated
– to predict final item quality and to improve a current design

• But design evaluation is tricky
– detail, intersection, merit and the design cube offer some insights

• Design is involved throughout a project

• There are several phases of software design
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Early Design Conclusions

• Having a good design before coding gives you a much better 
chance of success

• Three main activities in Early Design
– requirements capture
– functionality design
– system design

• Describing designs is difficult
– use well-written concise text
– lots of pictures and examples
– consider a formal diagram technique such as UML
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Conclusions

• Software design issues 
– identify and tackle critical features first
– resolve design trade-offs with the project priorities in mind
– seek out problems as early as possible
– use cunning to simplify the design
– keep it consistent as it evolves
– Ambiguity 
– Fitting In
– Adaption
– take pride in it
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