
Shared Memory
Programming with OpenMP

Lecture 1: Concepts

Overview

• Shared memory systems

• Basic Concepts in Threaded Programming

3

Shared memory systems
• Threaded programming is most often used on shared memory parallel

computers.

• A shared memory computer consists of a number of processing units
(CPUs/cores) together with some memory

• Key feature of shared memory systems is a single address space
across the whole memory system.
- every CPU/core can read and write all memory locations in the

system
- one logical memory space
- all CPUs/cores refer to a memory location using the same address

4

Conceptual model

P P PP P P

Interconnect

Memory

5

Real hardware
• Real shared memory hardware is more complicated than

this…..
-Memory may be split into multiple smaller units
- There may be multiple levels of cache memory

• some of these levels may be shared between subsets of processors
- The interconnect may have a more complex topology

• ….but a single address space is still supported
- Hardware complexity can affect performance of programs, but not their

correctness

6

Real hardware example

Memory

P P

L1 L1

L2

P P

L1 L1

L2

Memory

7

Threaded Programming Model
• The programming model for shared memory is based on the notion of

threads
- threads are like processes, except that threads can share memory with each

other (as well as having private memory)
• Shared data can be accessed by all threads
• Private data can only be accessed by the owning thread
• Different threads can follow different flows of control through the same

program
- each thread has its own program counter

• Usually run one thread per CPU/core
- but could be more
- can have hardware support for multiple threads per core

8

Threads (cont.)

PC PC PCPrivate data Private data Private data

Shared data

Thread 1 Thread 2 Thread 3

9

Thread communication
• In order to have useful parallel programs, threads must be

able to exchange data with each other
• Threads communicate with each other via reading and

writing shared data
- thread 1 writes a value to a shared variable A
- thread 2 can then read the value from A

• Note: there is no notion of messages in this model

10

Thread Communication
Thread 1 Thread 2
mya=23

mya=a+1

23

23 24

Program

Private
data

Shared
data

a=mya

11

Synchronisation
• By default, threads execute asynchronously
• Each thread proceeds through program instructions independently of other

threads
• This means we need to ensure that actions on shared variables occur in

the correct order: e.g.
thread 1 must write variable A before thread 2 reads it,

or
thread 1 must read variable A before thread 2 writes it.

• Note that updates to shared variables (e.g. a = a + 1) are not atomic!
• If two threads try to do this at the same time, one of the updates may get

overwritten.

12

Synchronisation example
Thread 1 Thread 2
load aProgram

CPU
Registers

Memory

10

10

1011 11

1111

add a 1
store a

load a
add a 1
store a

13

Tasks
• A task is a piece of computation which can be executed independently of

other tasks
• In principle we could create a new thread to execute every task
- in practise this can be too expensive, especially if we have large numbers of

small tasks
• Instead tasks can be executed by a pre-exisiting pool of threads
- tasks are submitted to the pool
- some thread in the pool executes the task
- at some point in the future the task is guaranteed to have completed

• Tasks may or may not be ordered with respect to other tasks

14

Parallel loops
• Loops are the main source of parallelism in many applications.
• If the iterations of a loop are independent (can be done in any order) then

we can share out the iterations between different threads.
• e.g. if we have two threads and the loop

for (i=0; i<100; i++){
a[i] += b[i];

}

we could do iteration 0-49 on one thread and iterations 50-99 on the
other.

• Can think of an iteration, or a set of iterations, as a task.

15

Reductions
• A reduction produces a single value from associative operations

such as addition, multiplication, max, min, and, or.
• For example:

b = 0;
for (i=0; i<n; i++)

b += a[i];

• Allowing only one thread at a time to update b would remove all
parallelism.

• Instead, each thread can accumulate its own private copy, then
these copies are reduced to give final result.

• If the number of operations is much larger than the number of
threads, most of the operations can proceed in parallel

16

Reusing this material

This work is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US

This means you are free to copy and redistribute the material and adapt and build on the
material under the following terms: You must give appropriate credit, provide a link to the
license and indicate if changes were made. If you adapt or build on the material you must

distribute your work under the same license as the original.

Note that this presentation contains images owned by others. Please seek their permission
before reusing these images.

17

http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US

