
Lecture 3: Parallel Regions

Shared Memory
Programming with OpenMP

Parallel region directive
• Code within a parallel region is executed by all threads.
• Syntax:

Fortran: !$OMP PARALLEL
block

!$OMP END PARALLEL

C/C++: #pragma omp parallel
{
block

}

3

Parallel region directive (cont)

Example:

fred();
#pragma omp parallel
{

billy();
}
daisy();

4

Useful functions
• Often useful to find out number of threads being used.

Fortran:
USE OMP_LIB

INTEGER FUNCTION OMP_GET_NUM_THREADS()

C/C++:
#include <omp.h>

int omp_get_num_threads(void);

• Important note: returns 1 if called outside parallel region!

5

Useful functions (cont)
• Also useful to find out number of the executing thread.

Fortran:
USE OMP_LIB
INTEGER FUNCTION OMP_GET_THREAD_NUM()

C/C++:
#include <omp.h>

int omp_get_thread_num(void)

• Takes values between 0 and OMP_GET_NUM_THREADS()- 1

6

Clauses
• Specify additional information in the parallel region

directive through clauses:

• Fortran : !$OMP PARALLEL [clauses]
• C/C++: #pragma omp parallel [clauses]

• Clauses are comma or space separated.

7

Shared and private variables
• Inside a parallel region, variables can be either shared (all threads

see same copy) or private (each thread has its own copy).
• Shared, private and default clauses
Fortran: SHARED(list)

PRIVATE(list)
DEFAULT(SHARED|PRIVATE|NONE)

C/C++: shared(list)
private(list)
default(shared|none)

8

Shared and private (cont.)
• On entry to a parallel region, private variables are

uninitialised.
• Variables declared inside the scope of the parallel region

are automatically private.
• After the parallel region ends the original variable is

unaffected by any changes to private copies.
• In C++ private objects are created using the default

constructor
• Not specifying a DEFAULT clause is the same as

specifying DEFAULT(SHARED)
- Danger!
- Always use DEFAULT(NONE)

9

Shared and private (cont)
Example: each thread initialises its own column of a shared array:

!$OMP PARALLEL DEFAULT(NONE),PRIVATE(I,MYID),

!$OMP& SHARED(A,N)
myid = omp_get_thread_num() + 1
do i = 1,n

a(i,myid) = 1.0
end do

!$OMP END PARALLEL

0 2 31

i

10

Multi-line directives
• Fortran: fixed source form

!$OMP PARALLEL DEFAULT(NONE),PRIVATE(I,MYID),

!$OMP& SHARED(A,N)

• Fortran: free source form

!$OMP PARALLEL DEFAULT(NONE),PRIVATE(I,MYID), &

!$OMP SHARED(A,N)

• C/C++:
#pragma omp parallel default(none) \
private(i,myid) shared(a,n)

11

Initialising private variables
• Private variables are uninitialised at the start of the parallel region.

• If we wish to initialise them, we use the FIRSTPRIVATE clause:

Fortran: FIRSTPRIVATE(list)
C/C++: firstprivate(list)

• Note: use cases for this are uncommon!
• In C++ the default copy constructor is called to create and initialise

the new object

12

Initialising private variables (cont)

Example:
b = 23.0;
.

#pragma omp parallel firstprivate(b), private(i,myid)
{

myid = omp_get_thread_num();
for (i=0; i<n; i++){

b += c[myid][i];
}
c[myid][n] = b;

}

13

Reductions

• A reduction produces a single value from associative operations
such as addition, multiplication, max, min, and, or.

• Would like each thread to reduce into a private copy, then reduce all
these to give final result.

• Use REDUCTION clause:

Fortran: REDUCTION(op:list)
C/C++: reduction(op:list)

• Can have reduction arrays in Fortran

• In C/C++, can use a special OpenMP syntax for array sections

14

Reductions (cont.)
Example:

b = 10
!$OMP PARALLEL REDUCTION(+:b),
!$OMP& PRIVATE(I,MYID)

myid = omp_get_thread_num() + 1
do i = 1,n

b = b + c(i,myid)
end do

!$OMP END PARALLEL
a = b

Each thread gets a private copy

of b, initialised to 0

All accesses inside the parallel
region are to the private copies

At the end of the parallel region, all
the private copies are added into the
original variable

Value in original variable is saved

15

Exercise
Area of the Mandelbrot set
• Aim: introduction to using parallel regions.
• Estimate the area of the Mandelbrot set.
-Generate a grid of complex numbers in a box surrounding the set
- Test each number to see if it is in the set or not.
- Ratio of points inside to total number of points gives an estimate of

the area.
- Testing of points is independent - parallelise with a parallel region!

16

Reusing this material

This work is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US

This means you are free to copy and redistribute the material and adapt and build on the
material under the following terms: You must give appropriate credit, provide a link to the
license and indicate if changes were made. If you adapt or build on the material you must

distribute your work under the same license as the original.

Note that this presentation contains images owned by others. Please seek their permission
before reusing these images.

17

http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US

