
OpenMP 4.0

Mark Bull, EPCC

OpenMP 4.0
• Version 4.0 was released in July 2013

• Now available in most production version compilers
•  support for device offloading not in all compilers, and not for all devices!

• Most recent version is 4.5, released in November 2015
•  enhancements to offloading, and a few other new features
•  not in production versions yet – expected sometime this year?

OpenMP 4.0 on ARCHER

• As of 9th March 2016, the default versions of GNU (5.1.0),
Intel (15.0.2) and Cray (8.4.1) compilers all support
OpenMP 4.0

What’s new in 4.0
• User defined reductions
• Construct cancellation
• Portable SIMD directives
• Extensions to tasking
•  Thread affinity
• Accelerator offload support

User defined reductions
• As of 3.1 cannot do reductions on objects or structures.
• UDR extensions in 4.0 add support for this.

• Use declare reduction directive to define new reduction
operators

• New operators can then be used in reduction clause.

#pragma omp declare reduction (reduction-identifier :
typename-list : combiner) [identity(identity-expr)]

•  reduction-identifier gives a name to the operator
•  Can be overloaded for different types
•  Can be redefined in inner scopes

•  typename-list is a list of types to which it applies
•  combiner expression specifies how to combine values
•  identity can specify the identity value of the operator

Can be an expression or a brace initializer

Example
#pragma omp declare reduction (merge : std::vector<int>
: omp_out.insert(omp_out.end(), omp_in.begin(), omp_in.end()))

• Private copies created for a reduction are initialized to the
identity that was specified for the operator and type
•  Default identity defined if identity clause not present

• Compiler uses combiner to combine private copies
•  omp_out refers to private copy that holds combined values
•  omp_in refers to the other private copy
• Can now use merge as a reduction operator.

Construct cancellation
• Clean way to signal early termination of an OpenMP construct.

•  one thread signals
•  other threads jump to the end of the construct

!$omp cancel construct [if (expr)]

where construct is parallel, sections, do or taskgroup
cancels the construct
 !$omp cancellation point construct
checks for cancellation (also happens implicitly at cancel
directive, barriers etc.)

Example
!$omp parallel do private(eureka)
do i=1,n
 eureka = testing(i,...)
!$omp cancel parallel if(eureka)
end do

•  First thread for which eureka is true will cancel the parallel

region and exit.
• Other threads exit next time they hit the cancel directive
• Could add more cancellation points inside testing()!

Portable SIMD directives
• Many compilers support SIMD directives to aid vectorisation of

loops.
•  compiler can struggle to generate SIMD code without these

• OpenMP 4.0 provides a standardised set
• Use simd directive to indicate a loop should be SIMDized
#pragma omp simd [clauses]
• Executes iterations of following loop in SIMD chunks
•  Loop is not divided across threads
• SIMD chunk is set of iterations executed concurrently by

SIMD lanes

• Clauses control data environment, how loop is partitioned
•  safelen(length) limits the number of iterations in a SIMD

chunk.
•  linear lists variables with a linear relationship to the iteration

space (induction variables)
•  aligned specifies byte alignments of a list of variables
•  private, lastprivate, reduction and collapse have

usual meanings.
• Also declare simd directive to generate SIMDised versions

of functions.
• Can be combined with loop constructs (parallelise and

SIMDise), e.g.: #pragma omp parallel for simd!

Extensions to tasking
•  taskgroup directive allows a task to wait for all descendant

tasks to complete
• Compare taskwait, which only waits for children
• Unlike taskwait, it has an associated structured block

#pragma omp taskgroup
{
 create_a_group_of_tasks(could_create_nested_tasks);
} // all created tasks complete by here

Task dependencies
•  depend clause on task construct

!$omp task depend(type:list)
where type is in, out and list is a list of variables.

•  list may contain subarrays: OpenMP 4.0 includes a syntax for C/C++
•  in: the generated task will be a dependent task of all previously

generated sibling tasks that reference at least one of the list items in
an out clause.

•  out: the generated task will be a dependent task of all previously
generated sibling tasks that reference at least one of the list items in
in or out clause.
•  can also use inout for clarity, but semantics are same as out!

Example
#pragma omp task depend (out:a)
 { ... }
#pragma omp task depend (out:b)
 { ... }
#pragma omp task depend (in:a,b)
 { ... }

•  The first two tasks can execute in parallel
•  The third task cannot start until both the first two are complete

Asynchronous Many Tasks
•  This example is quite simple, but the concept is quite

powerful
• Portable way of doing Asynchronous Many Task style

programming (as in OmpSs, PLASMA/DPLASMA).
• Programmer just specifies computational tasks and their

data dependencies – actual execution order is determined
by the OpenMP runtime (respecting the dependencies).

• Can help to avoid scalability problems with “bulk
synchronous” approaches

Thread affinity
• Since many systems are now NUMA and SMT, placement of

threads on the hardware can have a big effect on
performance.

• Up until now, control of this in OpenMP is very limited.
• Some compilers have their own extensions.
• OpenMP 4.0 gives much more control
• Don’t expect this to be necessary for most ARCHER

applications
•  only really helpful if there are nested OpenMP parallel regions
•  most ARCHER applications use MPI + one level of OpenMP

Affinity environment
•  Increased choices for OMP_PROC_BIND
• Can still specify true or false
• Can now provide a list (possible item values: master, close

or spread) to specify how to bind parallel regions at different
nesting levels.

• Added OMP_PLACES environment variable
• Can specify abstract names including threads, cores and

sockets
• Can specify an explicit ordered list of places
• Place numbering is implementation defined

Example
•  Processor with 8 cores, 4 hardware threads per core.

export OMP_PLACES=threads

export OMP_PROC_BIND=“spread,close”

Accelerator support
• Similar to, but not the same as, OpenACC directives.
• Support for more than just loops
•  Less reliance on compiler to parallelise and map code to

threads
• Not GPU specific
•  Fully integrated into OpenMP
• Not relevant for ARCHER (no accelerators!)

• Host‐centric model with one host device and multiple
target devices of the same type.

•  device: a logical execution engine with local storage.
•  device data environment: a data environment associated

with a target data or target region.
•  target constructs control how data and code is

offloaded to a device.
• Data is mapped from a host data environment to a device

data environment.

• Code inside target region is executed on the device.
• Executes sequentially by default.
• Can include other OpenMP directives to run in parallel
• Clauses to control data movement.
#pragma omp target map(to:B,C), map(tofrom:sum)
#pragma omp parallel for reduction(+:sum)
for (int i=0; i<N; i++){

 sum += B[i] + C[i];
}

•  target data construct just moves data and does not
execute code (c.f. #pragma acc data in OpenACC).

•  target update construct updates data during a target data
region.

•  declare target compiles a version of function/subroutine
that can be called on the device.

•  Target regions are blocking: the encountering thread waits for
them to complete.
•  Asynchronous behaviour can be achieved by using target regions inside

tasks (with dependencies if required).
•  N.B. This has changed in OpenMP 4.5: can use nowait clause on

target

What about GPUs?
• Executing a target region on a GPU can only use one

multiprocessor
•  synchronisation required for OpenMP not possible between

multiprocessors
•  not much use!

•  teams construct creates multiple master threads which can
execute in parallel, spawn parallel regions, but cannot
synchronise or communicate with each other.

•  distribute construct spreads the iterations of a parallel
loop across teams.
•  Only schedule option is static (with optional chunksize).

Example
#pragma omp target teams distribute parallel for\
map(to:B,C), map(tofrom:sum) reduction(+:sum)
for (int i=0; i<N; i++){

 sum += B[i] + C[i];
}

• Distributes iterations across multiprocessors and across threads
within each multiprocessor.

OpenMP target vs. OpenACC
•  Latest versions of OpenMP (4.5) and OpenACC (2.5)

support pretty much the same functionality with different
syntax.

• Exception is OpenACC kernels directive which relies on
compiler auto-parallelisation capabilities – goes against
the prescriptive philosophy of OpenMP.

• OpenACC is not likely to evolve any further, but will not
die off quickly

• Maybe worth considering using OpenMP 4.5 for portability
and sustainability.

