NATURAL
ENVIRONMENT E P S R‘
RESEARCH COUNCIL

OpenMP 4.0

Mark Bull, EPCC

epce @




[
OpenMP 4.0

Version 4.0 was released in July 2013

Now available in most production version compilers
support for device offloading not in all compilers, and not for all devices!

Most recent version is 4.5, released in November 2015
enhancements to offloading, and a few other new features
not in production versions yet — expected sometime this year?

epcc




T
OpenMP 4.0 on ARCHER

As of 9" March 2016, the default versions of GNU (5.1.0),
Intel (15.0.2) and Cray (8.4.1) compilers all support
OpenMP 4.0

N ~7 @
AR

O

~<

epcc




-
What's new in 4.0

User defined reductions
Construct cancellation
Portable SIMD directives
Extensions to tasking
Thread affinity

Accelerator offload support

epce




User defined reductions

- As of 3.1 cannot do reductions on objects or structures.
- UDR extensions in 4.0 add support for this.

- Use declare reduction directive to define new reduction
operators

- New operators can then be used in reduction clause.

#pragma omp declare reduction (reduction-identifier :
typename-list : combiner) [identity(identity-expr)]

epce




reduction-identifier gives a name to the operator
Can be overloaded for different types
Can be redefined in inner scopes

typename-1list is a list of types to which it applies
combiner expression specifies how to combine values

identity can specify the identity value of the operator
Can be an expression or a brace initializer

epcc




Example

#pragma omp declare reduction (merge : std::vector<int>
: omp out.insert(omp out.end(), omp in.begin(), omp in.end()))

Private copies created for a reduction are initialized to the
identity that was specified for the operator and type
Default identity defined if identity clause not present

Compiler uses combiner to combine private copies

omp out refers to private copy that holds combined values
omp in refers to the other private copy

Can now use merge as a reduction operator.

epcc




Construct cancellation

Clean way to signal early termination of an OpenMP construct.
one thread signals

other threads jump to the end of the construct
!Somp cancel construct [if (expr)]

where construct is parallel, sections, do or taskgroup
cancels the construct

Somp cancellation point construct

checks for cancellation (also happens implicitly at cancel
directive, barriers etc.)

epce




Example

!Somp parallel do private (eureka)
do i=1l,n

eureka = testing(i,...)
!Somp cancel parallel if (eureka)
end do

- First thread for which eureka is true will cancel the parallel
region and exit.

- Other threads exit next time they hit the cancel directive
- Could add more cancellation points inside testing ()

epcc




-
Portable SIMD directives

Many compilers support SIMD directives to aid vectorisation of
loops.
compiler can struggle to generate SIMD code without these

OpenMP 4.0 provides a standardised set

Use simd directive to indicate a loop should be SIMDized
#pragma omp simd [clauses]

Executes iterations of following loop in SIMD chunks

Loop is not divided across threads

SIMD chunk is set of iterations executed concurrently by
SIMD lanes

epcc




Clauses control data environment, how loop is partitioned
safelen (length) limits the number of iterations in a SIMD
chunk.

linear lists variables with a linear relationship to the iteration
space (induction variables)

aligned specifies byte alignments of a list of variables
private, lastprivate, reduction and collapse have
usual meanings.

Also declare simd directive to generate SIMDised versions
of functions.

Can be combined with loop constructs (parallelise and
SIMDise), e.g.: #pragma omp parallel for simd

epcc




Extensions to tasking

- taskgroup directive allows a task to wait for all descendant
tasks to complete

- Compare taskwait, which only waits for children
- Unlike taskwait, it has an associated structured block

#pragma omp taskgroup
{

create _a group of tasks(could create nested tasks);
} // all created tasks complete by here

epce

N~y %
M
@)

<




Task dependencies

depend clause on task construct

'Somp task depend (type:list)
where type is in, out and /ist is a list of variables.
list may contain subarrays: OpenMP 4.0 includes a syntax for C/C++
in: the generated task will be a dependent task of all previously
generated sibling tasks that reference at least one of the list items in
an out clause.

out: the generated task will be a dependent task of all previously
generated sibling tasks that reference at least one of the list items in

in or out clause.
can also use inout for clarity, but semantics are same as out

epcc

((,
AW,
~ ~]
o
<




Example
#pragma omp task depend (out:a)

{ ...}
#pragma omp task depend (out:Db)

{ ... 1}
#pragma omp task depend (in:a,b)

{ ...}

The first two tasks can execute in parallel
The third task cannot start until both the first two are complete

epcc




Asynchronous Many Tasks

This example is quite simple, but the concept is quite
powerful

Portable way of doing Asynchronous Many Task style
programming (as in OmpSs, PLASMA/DPLASMA).

Programmer just specifies computational tasks and their
data dependencies — actual execution order is determined
by the OpenMP runtime (respecting the dependencies).

Can help to avoid scalability problems with “bulk
synchronous” approaches

epce

S
N~y %
M
@)
<




I
Thread affinity

Since many systems are now NUMA and SMT, placement of
threads on the hardware can have a big effect on
performance.

Up until now, control of this in OpenMP is very limited.
Some compilers have their own extensions.
OpenMP 4.0 gives much more control

Don’t expect this to be necessary for most ARCHER
applications

only really helpful if there are nested OpenMP parallel regions
most ARCHER applications use MPI + one level of OpenMP

epce




Affinity environment

Increased choices for OMP_PROC BIND
Can still specify true or false

Can now provide a list (possible item values: master, close
or spread) to specify how to bind parallel regions at different

nesting levels.
Added OMP_PLACES environment variable

Can specify abstract names including threads, cores and
sockets

Can specify an explicit ordered list of places
Place numbering is implementation defined

epce




-
Example

* Processor with 8 cores, 4 hardware threads per core.
export OMP PLACES=threads

export OMP PROC BIND="“spread,close”

Initial 000 0000 0000 0000 0000 0000 0000 0000



Accelerator support

Similar to, but not the same as, OpenACC directives.
Support for more than just loops

Less reliance on compiler to parallelise and map code to
threads

Not GPU specific

Fully integrated into OpenMP
Not relevant for ARCHER (no accelerators!)

epcc

S
N~y %
M
@)
<




Host-centric model with one host device and multiple
target devices of the same type.

device: a logical execution engine with local storage.

device data environment: a data environment associated
with a target data or target region.

target constructs control how data and code is
offloaded to a device.

Data is mapped from a host data environment to a device
data environment.

epcc




Code inside target region is executed on the device.
Executes sequentially by default.
Can include other OpenMP directives to run in parallel
Clauses to control data movement.
#pragma omp target map(to:B,C), map(tofrom:sum)
#pragma omp parallel for reduction (+:sum)
for (int i=0; i<N; i++){
sum += B[1] + C[1];
}

epcc




target data construct just moves data and does not
execute code (c.f. #pragma acc data in OpenACC).

target update construct updates data during a target data
region.

declare target compiles a version of function/subroutine
that can be called on the device.

Target regions are blocking: the encountering thread waits for
them to complete.

Asynchronous behaviour can be achieved by using target regions inside
tasks (with dependencies if required).

N.B. This has changed in OpenMP 4.5: can use nowait clause on
target

epce




-
What about GPUSs?

Executing a target region on a GPU can only use one
multiprocessor

synchronisation required for OpenMP not possible between
multiprocessors

not much use!
teams construct creates multiple master threads which can
execute in parallel, spawn parallel regions, but cannot
synchronise or communicate with each other.

distribute construct spreads the iterations of a parallel
loop across teams.
Only schedule option is static (with optional chunksize).

epce




Example

#pragma omp target teams distribute parallel for\
map (to:B,C) , map(tofrom:sum) reduction (+:sum)

for (int i=0; i<N; i++) {
sum += B[i] + C[i];
}

Distributes iterations across multiprocessors and across threads
within each multiprocessor.

epcc




-
OpenMP target vs. OpenACC

Latest versions of OpenMP (4.5) and OpenACC (2.5)
support pretty much the same functionality with different

syntax.

Exception is OpenACC kernels directive which relies on
compiler auto-parallelisation capabilities — goes against
the prescriptive philosophy of OpenMP.

OpenACC is not likely to evolve any further, but will not
die off quickly

Maybe worth considering using OpenMP 4.5 for portability
and sustainability.

epce

S
N~y %
M
@)
<




