
Welcome!

Virtual tutorial starts at 15:00 GMT

Please leave feedback afterwards at:

www.archer.ac.uk/training/feedback/online-course-

feedback.php

Parallel supermeshing for

multimesh modelling
ARCHER Virtual Tutorial, 13/07/2016

Iakovos Panourgias

<i.panourgias@epcc.ed.ac.uk>

Reusing this material

This work is licensed under a Creative Commons

Attribution-NonCommercial-ShareAlike 4.0 International

License.

http://creativecommons.org/licenses/by-nc-

sa/4.0/deed.en_US

This means you are free to copy and redistribute the material and adapt and build on the

material under the following terms: You must give appropriate credit, provide a link to the

license and indicate if changes were made. If you adapt or build on the material you must

distribute your work under the same license as the original.

Note that this presentation contains images owned by others. Please seek their

permission before reusing these images.

http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US

Outline

• Motivation

• Fluidity

• libsupermesh 2D / 3D

• Results

Motivation

• Models which use multiple non-matching unstructured

meshes generally need to solve a computational

geometry problem, and construct intersection meshes in

a process known as supermeshing.

• Parallel supermeshing; for meshes with non-matching

domain decompositions.

Fluidity

• Unstructured finite element code (one, two and three

dimensions)

• Anisotropic mesh adaptivity

• Applications:

• CFD, geophysical fluid dynamics,

mantle convection,

ocean and reservoir modelling,

mining, etc.

Supermeshing

• Was originally developed to perform data interpolation on

two or more different unstructured meshes.

• Allows equations to be solved on a complex unstructured

mesh while simultaneously using input data from a

separate and completely different unstructured mesh.

• A supermesh is a mesh with the following property:

each element in the supermesh is contained within

exactly one element of each parent mesh.

Supermeshing Figure

Supermeshing algorithm

1. Identification of pairs of elements, one on each mesh,

which intersect;

2. Generation of a mesh of their intersection (the "local

supermesh");

3. The transfer of data onto this intersection mesh.

libsupermesh

Key capabilities:

• Easy to use

• Handles unstructured meshes with non-matching domain

decompositions

• General purpose library (user specified compute

functionality)

• Implements several new algorithms for identifying

candidate pairs of intersection elements

• Has been tested on up to 10,000 cores on ARCHER

• Has been tested as a replacement intersector finder with

Fluidity

Getting libsupermesh

libsupermesh has been compiled and tested on ARCHER

(using GNU (5.1.0), Intel (15.0.2.164) and Cray (8.4.1)

compilers).

• The library, manual and example programs are available

at:

https://bitbucket.org/libsupermesh/

• Minimal dependencies to install

• Build instructions and cmake file provided

• Distributed under the terms of the GNU Lesser General

Public License version 2.1

https://bitbucket.org/libsupermesh/
https://bitbucket.org/libsupermesh/

Compiling with libsupermesh

Include a single libsupermesh module file:

use libsupermesh_parallel_supermesh

You have to compile libsupermesh with the same compiler

(and version) as your application.

libsupermesh development (serial)

• Existing Fluidity supermeshing code was extracted and

copied to a standalone library (libsupermesh)

• CGAL1 element intersection code was removed

• Wild Magic intersection code was removed

• Intersection code was replaced with an optimised

implementation

• Supermeshing and intersection code was cleaned up –

removing all dependencies with Fluidity data structures

1 http://www.cgal.org/

http://www.cgal.org/

libsupermesh development (serial)

Several algorithms for identifying candidate pairs of elements that may

intersect were implemented. All algorithms are based upon an axis-aligned

bounding box (AABB) intersection predicate:

• Sort intersection

• Quadtree intersection finder

• Octree intersection finder

• R*-tree intersection finder1

• Advancing front intersection finder2

1 http://libspatialindex.github.io/

2 “P. E. Farrell and J. R. Maddison, “Conservative interpolation between

volume meshes by local Galerkin projection”, Computer Methods in

Applied Mechanics and Engineering, 200, pp. 89-100, 2011”

http://libspatialindex.github.io/

libsupermesh development (serial)
The libsupermesh standalone library exposes several interfaces which

return a local mesh of the intersection of two elements (a local

supermesh). The following interfaces are supported:

• One dimension: interval intersection, intended primarily for code

testing;

• Two dimensions: Intersection of two-dimensional convex polygons

using the Sutherland- Hodgman clipping algorithm

• Three dimensions: Intersection of three-dimensional convex polyhedra

using the “plane-at-a-time clipping” algorithm

• General dimensions: convenience interfaces which use one of the

above mentioned methods

libsupermesh development (serial)

• Integration with Fluidity (as a replacement intersection and

supermeshing implementation)

• libsupermesh has been added as an optional Fluidity component

libsupermesh testing (serial)

• Wrote a regression testing suite

• Used Fluidity regression testing suite

• Run tests with the following GNU Fortran options:

-O0 -g -Wall -fcheck=all

-ffpe-trap=invalid,zero,overflow,underflow

-finit-integer=-66666 -finit-real=nan -fimplicit-none

libsupermesh results (serial)

• The 2D/3D benchmarks take as input two quasi-uniform resolution

unstructured triangle/tetrahedra meshes of an equilateral

triangle/square pyramid domain, A and B, with mesh B having roughly

one half the element size of mesh A.

• The meshes were generated using Gmsh1.

1 http://gmsh.info/

A B

http://gmsh.info/
http://gmsh.info/

libsupermesh results (serial) – 2D Intersection Finder

libsupermesh results (serial) – 2D Intersector

libsupermesh results (serial) – 3D Intersection Finder

libsupermesh results (serial) – 3D Intersector

libsupermesh development (parallel)

• The algorithm for constructing a local supermesh is trivially

parallelisable*

* as long as the decompositions of the two meshes are perfectly

aligned.

libsupermesh development (parallel)
In order to generalise the algorithm to perform parallel supermesh calculations on

meshes that are not perfectly aligned, the following algorithm was implemented:

1. Communicate the axis-aligned bounding boxes (AABBs) of all mesh A

partitions and all mesh B partitions using all-to-all communication;

2. For each mesh A partition whose AABB intersects with the local mesh B

AABB:

a) Identify local mesh B elements whose AABBs intersect with the AABB of the

mesh A partition;

b) Obtain data associated with these elements, and communicate these data

via point-to-point communication.

3. Construct the intersection meshes for local mesh A and local mesh B

elements, and perform calculations on these intersection meshes;

4. For each mesh B partition whose AABB intersects with the local mesh A

AABB:

a) Unpack data communicated in step 2b;

b) Construct the intersection meshes for local mesh A and received mesh B

elements, and perform calculations on these intersection meshes.

libsupermesh development (parallel) – Step 1

• Calculate the axis-aligned bounding box (AABB) of the local meshes

(A and B)

• Use MPI all-to-all communication to distribute the bounding boxes

across the whole domain

• After this step MPI processes know the bounding boxes of all mesh

partitions

libsupermesh example – meshes

Mesh A Mesh B

libsupermesh example – partitioned meshes

Mesh A Mesh B

1
1

2

2

3 3

4

4

libsupermesh example – MPI Proc 1 view

Mesh A Mesh B

libsupermesh example – Step 1

A

B

MPI 1 MPI 2 MPI 3 MPI 4

libsupermesh development (parallel) – Step 2

• Each MPI process runs a test on the bounding boxes of each mesh

A partition, communicated in step 1, with the local mesh B partition

• If the bounding boxes intersect then some of the local mesh B

elements may intersect with some mesh A elements on a different

process (further processing in Step 2a)

• Similarly each process runs a test on the bounding boxes of each

mesh B partition, communicated in step 1, with the local mesh A

partition

• If the bounding boxes intersect then some of the local mesh A

elements may intersect with some mesh B elements stored on a

remote process. An MPI_RECV is issued.

libsupermesh example – Step 2
MPI process 1 view (local)

Local

MPI Process 1

tests and expects

intersections with

remote

MPI processes

2, 3 and 4.

Posts MPI_RECVs.

libsupermesh example – Step 2
MPI process 2, 3, 4 view (remote)

Some local elements intersect with AABB.

libsupermesh development (parallel) – Step 2a

• In this step each local mesh B element bounding box is tested

against the bounding box of the mesh A partition identified in step 2

• The local mesh B elements which intersect with the bounding box of

the mesh A partition are marked for sending.

libsupermesh example – Step 2a
MPI process 2, 3, 4 view (remote)

MPI processes 2, 3, 4 test and send elements that intersect.

libsupermesh development (parallel) – Step

2b

• In this step the local mesh B elements to be communicated to

remote processes are known

• A user provided callback function is used to create a packed array

containing necessary user data

• Once the data have been packed, libsupermesh creates a packed

MPI message containing additional meta-data. The packed MPI

message has the following format:
1. Number of elements (MPI_INTEGER);

2. Number of mesh vertices (MPI_INTEGER);

3. Connectivity of mesh vertices (flat array of MPI_INTEGER);

4. Coordinates of mesh vertices (flat array of MPI_DOUBLE_PRECISION);

5. Size of user supplied data (MPI_INTEGER);

6. User supplied data (MPI_BYTE).

libsupermesh development (parallel) – Step 3

• This step handles the case where elements in the local mesh A and

local mesh B intersect.

• If there is a local intersection, then the intersection meshes can be

constructed and all relevant calculations can be performed using a

user provided callback function

libsupermesh example – Step 3

Local mesh A:

Local mesh B:

MPI Process 1

This area can be calculated, locally.

There is no need to communicate.

libsupermesh development (parallel) – Step 4a

• The receiving MPI process knows if the local mesh A AABB

intersects with the mesh B partition (based on the test in step 2)

• The receiving MPI process call MPI_Probe (since the size of the

MPI message is not known)

• If the first MPI_INTEGER of the received MPI message is equal to 0;

the message is discarded (since it was false positive)

• If the first MPI_INTEGER of the received MPI is not equal to 0; the

message is unpacked and a user specified unpack function is

called.

libsupermesh example – Step 4a
MPI process 1 view (local)

Local

MPI Process 1 calls

MPI_Probe in order to

receive elements from

the remote MPI procs.

MPI Process 1 has now

enough remote

elements to construct

the local supermesh.

libsupermesh development (parallel) – Step 4b

• The final step constructs the intersection meshes of the

communicated mesh B elements and the local mesh A elements.

• The candidate intersection identification is performed using the

libspatialindex R*-tree algorithm (the faster quadtree (2D) and octree

(3D) were completed late in the project).

Simple application that uses libsupermesh
You can follow the examples and tests in /src/tests directory.

Pseudo-code:
1. Start of application.

2. Include the libsupermesh_parallel_supermesh module

3. Set up mesh data (libsupermesh supports reading files which are in

Triangle1 or TetGen2 .node and .ele format) for mesh A and B.

4. Call supermesh*

5. libsupermesh will compute the local supermesh.

6. It will then apply the user provided calculation function to the

supermesh.

7. At the end of the call each MPI process will have a result for the local

supermesh.
1 https://www.cs.cmu.edu/~quake/triangle.html

2 http://wias-berlin.de/software/tetgen/

https://www.cs.cmu.edu/~quake/triangle.html
http://wias-berlin.de/software/tetgen/
http://wias-berlin.de/software/tetgen/
http://wias-berlin.de/software/tetgen/

libsupermesh results (parallel)

• The 2D and 3D benchmarks take as inputs two meshes (A and B)

and construct an intersection mesh

• The 2D benchmarks mesh A is a triangle shaped mesh, whereas

mesh B is a square shaped mesh

• The 3D benchmarks use a pyramid shaped mesh (as mesh A) and a

cubed shaped mesh (as mesh B)

• The meshes were generated using Gmsh1

• The Fluidity tool “fldecomp” was used to partition the meshes.

1 http://gmsh.info/

http://gmsh.info/

libsupermesh results (parallel) - meshes

 2D 3D

libsupermesh results (parallel) - benchmarks

Small and large benchmarks:
• 33,065,204 elements for mesh A and 29,399,556 elements for mesh B (2D)

• 33,077,698 elements for mesh A and 27,301,039 elements for mesh B (3D)

• 297,512,852 elements for mesh A and 264,549,836 elements for mesh B (2D)

• 141,873,169 elements for mesh A and 128,459,529 elements for mesh B (3D)

libsupermesh results (parallel) - benchmarks

3 different types of benchmarks:

• Compute the area (2D) or volume (3D) of the mesh intersection

region

• Compute the area (2D) or volume (3D) of the mesh intersection

region and also the L2 inner product of two piecewise linear

continuous functions defined using a standard P1 Lagrange basis

• Compute the area (2D) and also the L2 inner product of two

piecewise quadratic continuous functions defined using a standard

P2 Lagrange basis.

libsupermesh results (parallel) – 2D small

1.00

10.00

100.00

1,000.00

0

1

10

100

1,000

1 10 100 1,000

S
p

e
e
d

u
p

R
u

n
ti

m
e
 (

s
e
c
o

n
d

s
)

Number of processors

2D area calculation/small mesh - runtime and speedup

Runtime

Speedup

Ideal Speedup

libsupermesh results (parallel) – 2D small

1.00

10.00

100.00

1,000.00

1

10

100

1,000

1 10 100 1,000

S
p

e
e
d

u
p

R
u

n
ti

m
e
 (

s
e
c
o

n
d

s
)

Number of processors

2D P1 L2 inner product / small mesh - runtime and
speedup

Runtime

Speedup

Ideal Speedup

libsupermesh results (parallel) – 2D large

1.00

10.00

100.00

1,000.00

10,000.00

1

10

100

1,000

10,000

1 10 100 1,000 10,000

S
p

e
e
d

u
p

R
u

n
ti

m
e
 (

s
e
c
o

n
d

s
)

Number of processors

2D area calculation/large mesh - runtime and speedup

Runtime

Speedup

Ideal Speedup

libsupermesh results (parallel) – 3D small

1.00

10.00

100.00

1,000.00

1

10

100

1,000

10,000

1 10 100 1,000

S
p

e
e
d

u
p

R
u

n
ti

m
e
 (

s
e
c
o

n
d

s
)

Number of processors

3D volume calculation/small mesh - runtime and
speedup

Runtime

Speedup

Ideal Speedup

libsupermesh results (parallel) – 3D large

1.00

10.00

100.00

1,000.00

10,000.00

1

10

100

1,000

10,000

100,000

1 10 100 1,000 10,000

S
p

e
e
d

u
p

R
u

n
ti

m
e

 (
s
e

c
o

n
d

s
)

Number of processors

3D volume calculation/large mesh - runtime and
speedup

Runtime

Speedup

Ideal Speedup

libsupermesh results (parallel) – 3D large

1.00

10.00

100.00

1,000.00

10,000.00

1

10

100

1,000

10,000

100,000

1 10 100 1,000 10,000

S
p

e
e
d

u
p

R
u

n
ti

m
e
 (

s
e
c
o

n
d

s
)

Number of processors

3D P1 L2 inner product / large mesh - runtime and
speedup

Runtime

Speedup

Ideal Speedup

Summary

• Improvements to the serial intersection finder algorithms used by Fluidity

• Implementation of an algorithm for parallel supermeshing, with non-matching

domain decompositions

• Parallel general purpose supermeshing library

• libsupermesh is available under an open source license through public

repositories

• Optimised and benchmarked; it can scale up to 10,000 cores for a one

hundred million degree of freedom problem with acceptable performance

• libsupermesh is available through Fluidity

Thank you

https://fluidityproject.github.io/ https://www.archer.ac.uk/

https://bitbucket.org/libsupermesh/

Questions

Slide title

• Content
• here

• And more
• including pictures as well I hope

http://www.archer.ac.uk/training/

• Face-to-face courses
• timetable, information and registration

• material from all past courses

• Virtual tutorials
• timetable plus slides and recordings from past courses

• please leave feedback on previous tutorials after viewing material

• Technical forum
• http://www.archer.ac.uk/community/techforum/

• recordings of previous meetings

http://www.archer.ac.uk/community/techforum/

Goodbye!

Thanks for attending

Please leave feedback at:

www.archer.ac.uk/training/feedback/online-course-feedback.php

